IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v261y2020ics0306261919320240.html
   My bibliography  Save this article

Conditional value-at-credibility for random fuzzy wind power in demand response integrated multi-period economic emission dispatch

Author

Listed:
  • Chen, J.J.
  • Qi, B.X.
  • Peng, K.
  • Li, Y.
  • Zhao, Y.L.

Abstract

As wind energy increasingly penetrates into power systems, new challenges arise for the dispatcher to keep the systems reliable under uncertain circumstances. To solve this problem, a conditional value-at-credibility (CVaC) model is proposed in this paper for hedging random fuzzy wind power in demand response integrated multi-period economic emission dispatch (MEED). In the model, a Gaussian distribution-based probability measure is presented to assess wind randomness with wind farm wake effects. Whilst a Cauchy distribution-based credibility measure is derived to assess wind fuzziness. After that, the wind power is deemed as a random fuzzy variable, and the objective function with respect to CVaC is developed to balance the risk and the profit of MEED with the wind farm’s integration. In addition, this paper presents an incentive-based demand response that incorporates a peak-flat-valley period partition mechanism into the time of use strategy to find the optimal incentive in shedding peak load. A novel global optimization algorithm is then established to solve the proposed optimization model. Case studies prove the feasibility and effectiveness of the proposed model in solving MEED with uncertain wind power by providing the optimal trade-off solution between economy and security.

Suggested Citation

  • Chen, J.J. & Qi, B.X. & Peng, K. & Li, Y. & Zhao, Y.L., 2020. "Conditional value-at-credibility for random fuzzy wind power in demand response integrated multi-period economic emission dispatch," Applied Energy, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320240
    DOI: 10.1016/j.apenergy.2019.114337
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919320240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    2. Jin, Jingliang & Zhou, Dequn & Zhou, Peng & Qian, Shuqu & Zhang, Mingming, 2016. "Dispatching strategies for coordinating environmental awareness and risk perception in wind power integrated system," Energy, Elsevier, vol. 106(C), pages 453-463.
    3. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    4. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    5. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    6. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    7. Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Nie, S., 2018. "A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin," Applied Energy, Elsevier, vol. 210(C), pages 60-74.
    8. Chen, J.J. & Zhuang, Y.B. & Li, Y.Z. & Wang, P. & Zhao, Y.L. & Zhang, C.S., 2017. "Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model," Applied Energy, Elsevier, vol. 189(C), pages 534-554.
    9. Shao, Changzheng & Ding, Yi & Wang, Jianhui, 2019. "A low-carbon economic dispatch model incorporated with consumption-side emission penalty scheme," Applied Energy, Elsevier, vol. 238(C), pages 1084-1092.
    10. Chen, J.J. & Wu, Q.H. & Zhang, L.L. & Wu, P.Z., 2017. "Multi-objective mean–variance–skewness model for nonconvex and stochastic optimal power flow considering wind power and load uncertainties," European Journal of Operational Research, Elsevier, vol. 263(2), pages 719-732.
    11. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2019. "Surrogate-assisted robust design optimization and global sensitivity analysis of a directly coupled photovoltaic-electrolyzer system under techno-economic uncertainty," Applied Energy, Elsevier, vol. 248(C), pages 310-320.
    12. Fang, Xin & Hodge, Bri-Mathias & Jiang, Huaiguang & Zhang, Yingchen, 2019. "Decentralized wind uncertainty management: Alternating direction method of multipliers based distributionally-robust chance constrained optimal power flow," Applied Energy, Elsevier, vol. 239(C), pages 938-947.
    13. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    2. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    3. Liu, Shuangquan & Xie, Mengfei, 2020. "Modeling the daily generation schedules in under-developed electricity markets with high-share renewables: A case study of Yunnan in China," Energy, Elsevier, vol. 201(C).
    4. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    5. Yongqi Zhao & Jiajia Chen, 2021. "A Quantitative Risk-Averse Model for Optimal Management of Multi-Source Standalone Microgrid with Demand Response and Pumped Hydro Storage," Energies, MDPI, vol. 14(9), pages 1-17, May.
    6. Jiao, P.H. & Chen, J.J. & Cai, X. & Zhao, Y.L., 2024. "Fuzzy semi-entropy based downside risk to low-carbon oriented multi-energy dispatch considering multiple dependent uncertainties," Energy, Elsevier, vol. 287(C).
    7. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    8. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).
    9. Zhang, M.Y. & Chen, J.J. & Yang, Z.J. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Stochastic day-ahead scheduling of irrigation system integrated agricultural microgrid with pumped storage and uncertain wind power," Energy, Elsevier, vol. 237(C).
    10. Bodong, Song & Wiseong, Jin & Chengmeng, Li & Khakichi, Aroos, 2023. "Economic management and planning based on a probabilistic model in a multi-energy market in the presence of renewable energy sources with a demand-side management program," Energy, Elsevier, vol. 269(C).
    11. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Lv, Haipeng & Fan, Tianyuan & Aikepaer, Sumaiya, 2023. "Stochastic optimal scheduling strategy of cross-regional carbon emissions trading and green certificate trading market based on Stackelberg game," Renewable Energy, Elsevier, vol. 219(P1).
    12. Jingliang Jin & Qinglan Wen & Xianyue Zhang & Siqi Cheng & Xiaojun Guo, 2021. "Economic Emission Dispatch for Wind Power Integrated System with Carbon Trading Mechanism," Energies, MDPI, vol. 14(7), pages 1-17, March.
    13. Li Yan & Zhengyu Zhu & Xiaopeng Kang & Boyang Qu & Baihao Qiao & Jiajia Huan & Xuzhao Chai, 2022. "Multi-Objective Dynamic Economic Emission Dispatch with Electric Vehicle–Wind Power Interaction Based on a Self-Adaptive Multiple-Learning Harmony-Search Algorithm," Energies, MDPI, vol. 15(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, P.H. & Chen, J.J. & Peng, K. & Zhao, Y.L. & Xin, K.F., 2020. "Multi-objective mean-semi-entropy model for optimal standalone micro-grid planning with uncertain renewable energy resources," Energy, Elsevier, vol. 191(C).
    2. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    3. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    4. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    5. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    6. Moghaddas Tafreshi, Seyed Masoud & Ranjbarzadeh, Hassan & Jafari, Mehdi & Khayyam, Hamid, 2016. "A probabilistic unit commitment model for optimal operation of plug-in electric vehicles in microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 934-947.
    7. Jin, Jingliang & Zhou, Peng & Li, Chenyu & Guo, Xiaojun & Zhang, Mingming, 2019. "Low-carbon power dispatch with wind power based on carbon trading mechanism," Energy, Elsevier, vol. 170(C), pages 250-260.
    8. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
    9. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    10. Luís A. C. Roque & Dalila B. M. M. Fontes & Fernando A. C. C. Fontes, 2017. "A Metaheuristic Approach to the Multi-Objective Unit Commitment Problem Combining Economic and Environmental Criteria," Energies, MDPI, vol. 10(12), pages 1-25, December.
    11. Jingliang Jin & Qinglan Wen & Xianyue Zhang & Siqi Cheng & Xiaojun Guo, 2021. "Economic Emission Dispatch for Wind Power Integrated System with Carbon Trading Mechanism," Energies, MDPI, vol. 14(7), pages 1-17, March.
    12. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    13. Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
    14. Mohammad Masih Sediqi & Mohammed Elsayed Lotfy & Abdul Matin Ibrahimi & Tomonobu Senjyu & Narayanan. K, 2019. "Stochastic Unit Commitment and Optimal Power Trading Incorporating PV Uncertainty," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    15. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    16. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    17. Sharifzadeh, Mahdi & Lubiano-Walochik, Helena & Shah, Nilay, 2017. "Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 385-398.
    18. Tang, Chenghui & Wang, Yishen & Xu, Jian & Sun, Yuanzhang & Zhang, Baosen, 2018. "Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations," Applied Energy, Elsevier, vol. 221(C), pages 348-357.
    19. Tan, Qinliang & Ding, Yihong & Zheng, Jin & Dai, Mei & Zhang, Yimei, 2021. "The effects of carbon emissions trading and renewable portfolio standards on the integrated wind–photovoltaic–thermal power-dispatching system: Real case studies in China," Energy, Elsevier, vol. 222(C).
    20. Jin, Jingliang & Zhou, Peng & Zhang, Mingming & Yu, Xianyu & Din, Hao, 2018. "Balancing low-carbon power dispatching strategy for wind power integrated system," Energy, Elsevier, vol. 149(C), pages 914-924.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.