IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp286-300.html
   My bibliography  Save this article

Stochastic predictive control of battery energy storage for wind farm dispatching: Using probabilistic wind power forecasts

Author

Listed:
  • Kou, Peng
  • Gao, Feng
  • Guan, Xiaohong

Abstract

The limited dispatchability of wind energy poses a challenge to its increased penetration. One technically feasible solution to this challenge is to integrate a battery energy storage system (BESS) with a wind farm. This highlights the importance of a BESS control strategy. In view of this, a stochastic model predictive control scheme is proposed in this paper. Based on the forecasted wind power distributions, the proposed scheme ensures the optimal operation of BESS in the presence of practical system constraints, thus bringing the wind-battery combined power output to the desired dispatch levels. The salient feature of the proposed scheme is that it takes into account the non-Gaussian wind power uncertainties. In this scheme, a probabilistic wind power forecasting model is employed as the prediction model, which quantifies the non-Gaussian uncertainties in wind power forecasts. Using chance constraints, the quantified uncertainties are incorporated into the controller design, thus forming a chance constrained stochastic programming problem. Using warping function, this problem is recast as a convex quadratic optimization problem, which is tractable both theoretically and practically. This way, the proposed control scheme handles the non-Gaussian uncertainties in wind power forecasts. The simulation results on actual data demonstrate the effectiveness of the proposed scheme. The data used in the simulation are obtained in the real operation of a wind farm in China.

Suggested Citation

  • Kou, Peng & Gao, Feng & Guan, Xiaohong, 2015. "Stochastic predictive control of battery energy storage for wind farm dispatching: Using probabilistic wind power forecasts," Renewable Energy, Elsevier, vol. 80(C), pages 286-300.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:286-300
    DOI: 10.1016/j.renene.2015.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalid, M. & Savkin, A.V., 2010. "A model predictive control approach to the problem of wind power smoothing with controlled battery storage," Renewable Energy, Elsevier, vol. 35(7), pages 1520-1526.
    2. Khalid, M. & Savkin, A.V., 2012. "An optimal operation of wind energy storage system for frequency control based on model predictive control," Renewable Energy, Elsevier, vol. 48(C), pages 127-132.
    3. Costa, Alexandre & Crespo, Antonio & Navarro, Jorge & Lizcano, Gil & Madsen, Henrik & Feitosa, Everaldo, 2008. "A review on the young history of the wind power short-term prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1725-1744, August.
    4. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    5. Bessa, Ricardo J. & Miranda, V. & Botterud, A. & Zhou, Z. & Wang, J., 2012. "Time-adaptive quantile-copula for wind power probabilistic forecasting," Renewable Energy, Elsevier, vol. 40(1), pages 29-39.
    6. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2013. "Sparse online warped Gaussian process for wind power probabilistic forecasting," Applied Energy, Elsevier, vol. 108(C), pages 410-428.
    7. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    8. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deyou Yang & Jiaxin Wen & Ka-wing Chan & Guowei Cai, 2016. "Dispatching of Wind/Battery Energy Storage Hybrid Systems Using Inner Point Method-Based Model Predictive Control," Energies, MDPI, vol. 9(8), pages 1-16, August.
    2. Azcárate, Cristina & Mallor, Fermín & Mateo, Pedro, 2017. "Tactical and operational management of wind energy systems with storage using a probabilistic forecast of the energy resource," Renewable Energy, Elsevier, vol. 102(PB), pages 445-456.
    3. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    4. Rodrigues, E.M.G. & Osório, G.J. & Godina, R. & Bizuayehu, A.W. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island," Energy, Elsevier, vol. 90(P2), pages 1606-1617.
    5. Sepasi, Saeed & Reihani, Ehsan & Howlader, Abdul M. & Roose, Leon R. & Matsuura, Marc M., 2017. "Very short term load forecasting of a distribution system with high PV penetration," Renewable Energy, Elsevier, vol. 106(C), pages 142-148.
    6. Keles, Dogan & Dehler-Holland, Joris, 2022. "Evaluation of photovoltaic storage systems on energy markets under uncertainty using stochastic dynamic programming," Energy Economics, Elsevier, vol. 106(C).
    7. Zhang, Kai & Li, Jingzhi & He, Zhubin & Yan, Wanfeng, 2018. "Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 356-369.
    8. Dahu Li & Hongyu Zhou & Yuan Chen & Yue Zhou & Yuze Rao & Wei Yao, 2023. "A Frequency Support Approach for Hybrid Energy Systems Considering Energy Storage," Energies, MDPI, vol. 16(10), pages 1-16, May.
    9. Brian Loza & Luis I. Minchala & Danny Ochoa-Correa & Sergio Martinez, 2024. "Grid-Friendly Integration of Wind Energy: A Review of Power Forecasting and Frequency Control Techniques," Sustainability, MDPI, vol. 16(21), pages 1-22, November.
    10. Zamar, David S. & Gopaluni, Bhushan & Sokhansanj, Shahab, 2017. "Optimization of sawmill residues collection for bioenergy production," Applied Energy, Elsevier, vol. 202(C), pages 487-495.
    11. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    12. Yang Yang & Chong Lian & Chao Ma & Yusheng Zhang, 2019. "Research on Energy Storage Optimization for Large-Scale PV Power Stations under Given Long-Distance Delivery Mode," Energies, MDPI, vol. 13(1), pages 1-20, December.
    13. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Appino, Riccardo Remo & González Ordiano, Jorge Ángel & Mikut, Ralf & Faulwasser, Timm & Hagenmeyer, Veit, 2018. "On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages," Applied Energy, Elsevier, vol. 210(C), pages 1207-1218.
    15. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Liu, Zhou & Liu, Wen & Chen, Zhe & Blaabjerg, Frede, 2020. "Scheduling of wind-battery hybrid system in the electricity market using distributionally robust optimization," Renewable Energy, Elsevier, vol. 156(C), pages 47-56.
    16. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
    17. İskeceli, Bilge Dilara & Kayakutlu, Gulgun & Daim, Tugrul U. & Shaygan, Amir, 2020. "Optimization of battery and wind technologies: Case of power deviation penalties," Technology in Society, Elsevier, vol. 63(C).
    18. Liu, Ling & Wang, Jujie & Li, Jianping & Wei, Lu, 2023. "Dual-meta pool method for wind farm power forecasting with small sample data," Energy, Elsevier, vol. 267(C).
    19. Luca Massidda & Marino Marrocu, 2017. "Decoupling Weather Influence from User Habits for an Optimal Electric Load Forecast System," Energies, MDPI, vol. 10(12), pages 1-16, December.
    20. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    21. Duchaud, Jean-Laurent & Notton, Gilles & Darras, Christophe & Voyant, Cyril, 2018. "Power ramp-rate control algorithm with optimal State of Charge reference via Dynamic Programming," Energy, Elsevier, vol. 149(C), pages 709-717.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    2. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Nissen, J.N., 2015. "A novel application of an analog ensemble for short-term wind power forecasting," Renewable Energy, Elsevier, vol. 76(C), pages 768-781.
    3. Gallego-Castillo, Cristobal & Bessa, Ricardo & Cavalcante, Laura & Lopez-Garcia, Oscar, 2016. "On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power," Energy, Elsevier, vol. 113(C), pages 355-365.
    4. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    5. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2013. "Sparse online warped Gaussian process for wind power probabilistic forecasting," Applied Energy, Elsevier, vol. 108(C), pages 410-428.
    6. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    7. Wenhao Zhuo & Andrey V. Savkin, 2019. "Profit Maximizing Control of a Microgrid with Renewable Generation and BESS Based on a Battery Cycle Life Model and Energy Price Forecasting," Energies, MDPI, vol. 12(15), pages 1-17, July.
    8. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    9. Iversen, Emil B. & Morales, Juan M. & Møller, Jan K. & Madsen, Henrik, 2016. "Short-term probabilistic forecasting of wind speed using stochastic differential equations," International Journal of Forecasting, Elsevier, vol. 32(3), pages 981-990.
    10. González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
    11. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    12. Simone Sperati & Stefano Alessandrini & Pierre Pinson & George Kariniotakis, 2015. "The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation," Energies, MDPI, vol. 8(9), pages 1-26, September.
    13. Ricardo Bessa & Carlos Moreira & Bernardo Silva & Manuel Matos, 2014. "Handling renewable energy variability and uncertainty in power systems operation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 156-178, March.
    14. Zhongrong Zhang & Yiliao Song & Feng Liu & Jinpeng Liu, 2016. "Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis," Sustainability, MDPI, vol. 8(2), pages 1-30, January.
    15. Wenhao Zhuo & Andrey V. Savkin & Ke Meng, 2019. "Decentralized Optimal Control of a Microgrid with Solar PV, BESS and Thermostatically Controlled Loads," Energies, MDPI, vol. 12(11), pages 1-15, June.
    16. Wang, Jianzhou & Hu, Jianming, 2015. "A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vec," Energy, Elsevier, vol. 93(P1), pages 41-56.
    17. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
    18. Miseta, Tamás & Fodor, Attila & Vathy-Fogarassy, Ágnes, 2022. "Energy trading strategy for storage-based renewable power plants," Energy, Elsevier, vol. 250(C).
    19. Wang, Yun & Hu, Qinghua & Meng, Deyu & Zhu, Pengfei, 2017. "Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model," Applied Energy, Elsevier, vol. 208(C), pages 1097-1112.
    20. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:286-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.