IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v167y2016icp270-279.html
   My bibliography  Save this article

Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty

Author

Listed:
  • Bai, Linquan
  • Li, Fangxing
  • Cui, Hantao
  • Jiang, Tao
  • Sun, Hongbin
  • Zhu, Jinxiang

Abstract

In the United States, natural gas-fired generators gained increasing popularity in recent years due to the low fuel cost and emission, as well as the proven large gas reserves. Consequently, the highly interdependency between the gas and electricity networks is needed to be considered in the system operation. To improve the overall system operation and optimize the energy flow, an interval optimization based coordinated operating strategy for the gas-electricity integrated energy system (IES) is proposed in this paper considering demand response and wind power uncertainty. In the proposed model, the gas and electricity infrastructures are modeled in detail and their operation constraints are fully considered, wherein the nonlinear characteristics are modeled including pipeline gas flow and compressors. Then a demand response program is incorporated into the optimization model and its effects on the IES operation are investigated. Based on interval mathematics, wind power uncertainty is represented as interval numbers instead of probability distributions. A case study is performed on a six-bus electricity network with a seven-node gas network to demonstrate the effectiveness of the proposed method; further, the IEEE 118-bus system coupling with a 14-node natural gas system is used to verify its applicability in practical bulk systems.

Suggested Citation

  • Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
  • Handle: RePEc:eee:appene:v:167:y:2016:i:c:p:270-279
    DOI: 10.1016/j.apenergy.2015.10.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915013550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaudry, Modassar & Jenkins, Nick & Qadrdan, Meysam & Wu, Jianzhong, 2014. "Combined gas and electricity network expansion planning," Applied Energy, Elsevier, vol. 113(C), pages 1171-1187.
    2. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    3. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alex, 2014. "Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator," Applied Energy, Elsevier, vol. 132(C), pages 15-22.
    4. Sengupta, Atanu & Pal, Tapan Kumar, 2000. "On comparing interval numbers," European Journal of Operational Research, Elsevier, vol. 127(1), pages 28-43, November.
    5. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    6. Liu, Yangyang & Jiang, Chuanwen & Shen, Jingshuang & Hu, Jiakai & Luo, Yifan, 2015. "Coordination of hydro units with wind power generation based on RAROC," Renewable Energy, Elsevier, vol. 80(C), pages 783-792.
    7. Pinson, P. & Nielsen, H.Aa. & Madsen, H. & Kariniotakis, G., 2009. "Skill forecasting from ensemble predictions of wind power," Applied Energy, Elsevier, vol. 86(7-8), pages 1326-1334, July.
    8. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moghaddas Tafreshi, Seyed Masoud & Ranjbarzadeh, Hassan & Jafari, Mehdi & Khayyam, Hamid, 2016. "A probabilistic unit commitment model for optimal operation of plug-in electric vehicles in microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 934-947.
    2. Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
    3. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    4. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Liao, Siyang & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao, 2018. "Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources," Applied Energy, Elsevier, vol. 211(C), pages 237-248.
    5. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    6. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    7. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Nissen, J.N., 2015. "A novel application of an analog ensemble for short-term wind power forecasting," Renewable Energy, Elsevier, vol. 76(C), pages 768-781.
    8. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    9. Zhao, Jing & Guo, Yanling & Xiao, Xia & Wang, Jianzhou & Chi, Dezhong & Guo, Zhenhai, 2017. "Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method," Applied Energy, Elsevier, vol. 197(C), pages 183-202.
    10. Qiao, Zheng & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Liu, Yuquan & Xiong, Wen, 2017. "An interval gas flow analysis in natural gas and electricity coupled networks considering the uncertainty of wind power," Applied Energy, Elsevier, vol. 201(C), pages 343-353.
    11. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
    12. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    13. Craparo, Emily & Karatas, Mumtaz & Singham, Dashi I., 2017. "A robust optimization approach to hybrid microgrid operation using ensemble weather forecasts," Applied Energy, Elsevier, vol. 201(C), pages 135-147.
    14. Luís A. C. Roque & Dalila B. M. M. Fontes & Fernando A. C. C. Fontes, 2017. "A Metaheuristic Approach to the Multi-Objective Unit Commitment Problem Combining Economic and Environmental Criteria," Energies, MDPI, vol. 10(12), pages 1-25, December.
    15. Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
    16. Mohammad Masih Sediqi & Mohammed Elsayed Lotfy & Abdul Matin Ibrahimi & Tomonobu Senjyu & Narayanan. K, 2019. "Stochastic Unit Commitment and Optimal Power Trading Incorporating PV Uncertainty," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    17. Mahtab Kaffash & Glenn Ceusters & Geert Deconinck, 2021. "Interval Optimization to Schedule a Multi-Energy System with Data-Driven PV Uncertainty Representation," Energies, MDPI, vol. 14(10), pages 1-20, May.
    18. Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
    19. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    20. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:167:y:2016:i:c:p:270-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.