My authors
Follow this author
Marcel Scharth
Citations
Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.Working papers
- David E. Allen & Michael McAleer & Marcel Scharth, 2014.
"Asymmetric Realized Volatility Risk,"
Documentos de Trabajo del ICAE
2014-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Working Papers in Economics 14/20, University of Canterbury, Department of Economics and Finance.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Tinbergen Institute Discussion Papers 14-075/III, Tinbergen Institute.
Cited by:
- Chang, C-L. & Ilomäki, J. & Laurila, H. & McAleer, M.J., 2018.
"Long Run Returns Predictability and Volatility with Moving Averages,"
Econometric Institute Research Papers
EI2018-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Documentos de Trabajo del ICAE 2018-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
- Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
- David E. Allen & Michael McAleer & Marcel Scharth, 2009.
"Realized Volatility Risk,"
CIRJE F-Series
CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
- David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," Working Papers in Economics 10/26, University of Canterbury, Department of Economics and Finance.
- David E. Allen & Michael McAleer & Marcel Scharth, 2013. "Realized volatility risk," Documentos de Trabajo del ICAE 2013-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CARF F-Series CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
- David E. Allen & Michael McAleer & Marcel Scharth, 2013. "Realized Volatility Risk," Tinbergen Institute Discussion Papers 13-092/III, Tinbergen Institute.
- David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," KIER Working Papers 753, Kyoto University, Institute of Economic Research.
Cited by:
- Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010.
"Asymmetry and Long Memory in Volatility Modelling,"
Econometric Institute Research Papers
EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2012. "Asymmetry and Long Memory in Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 495-512, June.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Asymmetry and Long Memory in Volatility Modelling," Documentos de Trabajo del ICAE 2011-29, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2010. "Asymmetry and Long Memory in Volatility Modelling," Working Papers in Economics 10/60, University of Canterbury, Department of Economics and Finance.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2010. "Asymmetry and Long Memory in Volatility Modelling," KIER Working Papers 726, Kyoto University, Institute of Economic Research.
- Manabu Asai & Michael McAleer, 2013.
"Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing,"
KIER Working Papers
840, Kyoto University, Institute of Economic Research.
- Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," Tinbergen Institute Discussion Papers 13-003/III, Tinbergen Institute.
- Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback E ects on Multifactor Wishart Stochastic Volatility for Option Pricing," Documentos de Trabajo del ICAE 2013-02, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
- Mark J. Jensen & John M. Maheu, 2014.
"Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis,"
Working Paper series
31_14, Rimini Centre for Economic Analysis.
- Jensen, Mark J & Maheu, John M, 2013. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," MPRA Paper 52132, University Library of Munich, Germany.
- Mark J. Jensen & John M. Maheu, 2014. "Risk, Return, and Volatility Feedback: A Bayesian Nonparametric Analysis," FRB Atlanta Working Paper 2014-6, Federal Reserve Bank of Atlanta.
- Mark J. Jensen & John M. Maheu, 2018. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," JRFM, MDPI, vol. 11(3), pages 1-29, September.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009.
"Asymmetry and Leverage in Realized Volatility,"
CARF F-Series
CARF-F-167, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009. "Asymmetry and Leverage in Realized Volatility," CIRJE F-Series CIRJE-F-656, CIRJE, Faculty of Economics, University of Tokyo.
- Asai, M. & McAleer, M.J. & Medeiros, M.C., 2008. "Asymmetry and leverage in realized volatility," Econometric Institute Research Papers EI 2008-31, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Asai, M. & Chang, C-L. & McAleer, M.J., 2017.
"Realized Stochastic Volatility with General Asymmetry and Long Memory,"
Econometric Institute Research Papers
TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Chia-Lin Chang & Michael McAleer, 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Tinbergen Institute Discussion Papers 17-038/III, Tinbergen Institute.
- Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
- Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
- Cathy Ning & Dinghai Xu & Tony Wirjanto, 2010.
"Modeling Asymmetric Volatility Clusters Using Copulas and High Frequency Data,"
Working Papers
1001, University of Waterloo, Department of Economics, revised Jan 2010.
- Cathy Ning & Dinghai Xu & Tony Wirjanto, 2009. "Modeling Asymmetric Volatility Clusters Using Copulas and High Frequency Data," Working Papers 006, Toronto Metropolitan University, Department of Economics.
- Duong, Diep & Swanson, Norman R., 2015.
"Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction,"
Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
- Diep Duong & Norman Swanson, 2013. "Empirical Evidence on the Importance of Aggregation, Asymmetry, and Jumps for Volatility Prediction," Departmental Working Papers 201321, Rutgers University, Department of Economics.
- Siem Jan Koopman & Marcel Scharth, 2011.
"The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures,"
Tinbergen Institute Discussion Papers
11-132/4, Tinbergen Institute.
- Siem Jan Koopman & Marcel Scharth, 2012. "The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 76-115, December.
- Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
- Manabu Asai & Chia-Lin Chang & Michael McAleer, 2016.
"Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers,"
Documentos de Trabajo del ICAE
2016-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Chia-Lin Chang & Michael McAleer, 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Tinbergen Institute Discussion Papers 16-076/III, Tinbergen Institute.
- Asai, M. & Chang, C-L. & McAleer, M.J., 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Econometric Institute Research Papers EI2016-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Michael McAleer, 2016.
"A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics,"
Tinbergen Institute Discussion Papers
16-065/III, Tinbergen Institute.
- Asai, M. & McAleer, M.J., 2016. "A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics," Econometric Institute Research Papers EI2016-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2012.
"Forecasting Realized (Co)Variances with a Bloc Structure Wishart Autoregressive Model,"
Working Papers on Finance
1211, University of St. Gallen, School of Finance.
- Matteo Bonato & Massimiliano Caporin & Angelo Ranaldo, 2009. "Forecasting realized (co)variances with a block structure Wishart autoregressive model," Working Papers 2009-03, Swiss National Bank.
- Allen, David E. & McAleer, Michael & Scharth, Marcel, 2011. "Monte Carlo option pricing with asymmetric realized volatility dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1247-1256.
- Debaly, Zinsou Max & Marchand, Philippe & Girona, Miguel Montoro, 2022. "Autoregressive models for time series of random sums of positive variables: Application to tree growth as a function of climate and insect outbreak," Ecological Modelling, Elsevier, vol. 471(C).
- Marcelo Fernandes & Marcelo Cunha Medeiros & MArcelo Scharth, 2007.
"Modeling and predicting the CBOE market volatility index,"
Textos para discussão
548, Department of Economics PUC-Rio (Brazil).
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014. "Modeling and predicting the CBOE market volatility index," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2013. "Modeling and predicting the CBOE market volatility index," Textos para discussão 342, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
Cited by:
- Falik Shear & Badar Nadeem Ashraf & Mohsin Sadaqat, 2020. "Are Investors’ Attention and Uncertainty Aversion the Risk Factors for Stock Markets? International Evidence from the COVID-19 Crisis," Risks, MDPI, vol. 9(1), pages 1-15, December.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021.
"A machine learning approach to volatility forecasting,"
CREATES Research Papers
2021-03, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023. "A Machine Learning Approach to Volatility Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
- Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016.
"How are VIX and Stock Index ETF Related?,"
Documentos de Trabajo del ICAE
2016-02, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chang, C-L. & Hsieh, T-L. & McAleer, M.J., 2016. "How are VIX and Stock Index ETF Related?," Econometric Institute Research Papers EI2016-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Liu, Qing & Wang, Shouyang & Sui, Cong, 2023. "Risk appetite and option prices: Evidence from the Chinese SSE50 options market," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018.
"Is market fear persistent? A long-memory analysis,"
Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Is Market Fear Persistent? A Long-Memory Analysis," Discussion Papers of DIW Berlin 1670, DIW Berlin, German Institute for Economic Research.
- Guglielmo Maria Caporale & Luis Gil-Alana & Alex Plastun, 2017. "Is Market Fear Persistent? A Long-Memory Analysis," CESifo Working Paper Series 6534, CESifo.
- Filip Žikeš & Jozef Baruník, 2016.
"Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
- Žikeš, Filip & Baruník, Jozef, 2014. "Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility," FinMaP-Working Papers 20, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Filip Zikes & Jozef Barunik, 2013. "Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility," Papers 1308.4276, arXiv.org.
- Balcilar, Mehmet & Hammoudeh, Shawkat & Toparli, Elif Akay, 2018. "On the risk spillover across the oil market, stock market, and the oil related CDS sectors: A volatility impulse response approach," Energy Economics, Elsevier, vol. 74(C), pages 813-827.
- Choe, Geon Ho & Choi, So Eun & Jang, Hyun Jin, 2020. "Assessment of time-varying systemic risk in credit default swap indices: Simultaneity and contagiousness," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
- Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
- Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016.
"Connecting VIX and Stock Index ETF,"
Tinbergen Institute Discussion Papers
16-010/III, Tinbergen Institute, revised 23 Jan 2017.
- Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2017. "Connecting VIX and Stock Index ETF," Documentos de Trabajo del ICAE 2017-08, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chang, C-L. & Hsieh, T-L. & McAleer, M.J., 2017. "Connecting VIX and Stock Index ETF," Econometric Institute Research Papers 2016-010/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019.
"A non-structural investigation of VIX risk neutral density,"
Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
- Andrea Barletta & Paolo Santucci de Magistris & Francesco Violante, 2017. "A Non-Structural Investigation of VIX Risk Neutral Density," CREATES Research Papers 2017-15, Department of Economics and Business Economics, Aarhus University.
- Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
- Fassas, Athanasios P. & Siriopoulos, Costas, 2021. "Implied volatility indices – A review," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 303-329.
- Gloria Gonzalez-Rivera & Joao Henrique Mazzeu & Esther Ruiz & Helena Veiga, 2017.
"A Bootstrap Approach for Generalized Autocontour Testing. Implications for VIX Forecast Densities,"
Working Papers
201709, University of California at Riverside, Department of Economics.
- João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020. "A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
- Söhnke M. Bartram & Jürgen Branke & Mehrshad Motahari, 2020.
"Artificial intelligence in asset management,"
Working Papers
20202001, Cambridge Judge Business School, University of Cambridge.
- Bartram, Söhnke & Branke, Jürgen & Motahari, Mehrshad, 2020. "Artificial Intelligence in Asset Management," CEPR Discussion Papers 14525, C.E.P.R. Discussion Papers.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Tommaso Trani, 2018.
"Brexit and Uncertainty in Financial Markets,"
CESifo Working Paper Series
6874, CESifo.
- Guglielmo Maria Caporale & Luis Gil-Alana & Tommaso Trani, 2018. "Brexit and Uncertainty in Financial Markets," IJFS, MDPI, vol. 6(1), pages 1-9, February.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Tommaso Trani, 2018. "Brexit and Uncertainty in Financial Markets," Discussion Papers of DIW Berlin 1719, DIW Berlin, German Institute for Economic Research.
- Liu, Qiang & Guo, Shuxin & Qiao, Gaoxiu, 2015. "VIX forecasting and variance risk premium: A new GARCH approach," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 314-322.
- Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2015. "Forecasting implied volatility indices worldwide: A new approach," MPRA Paper 72084, University Library of Munich, Germany.
- Bucci, Andrea, 2019.
"Realized Volatility Forecasting with Neural Networks,"
MPRA Paper
95443, University Library of Munich, Germany.
- Andrea Bucci, 0. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Chune Young Chung & Doojin Ryu & Kainan Wang & Blerina Bela Zykaj, 2018. "Optionable Stocks and Mutual Fund Performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 390-412, March.
- VDMV Lakshmi & Garima Sisodia & Anto Joseph & Aviral Kumar Tiwari, 2024. "The conditional impact of market conditions, volatility and liquidity shocks on the arbitrage opportunities during pre‐COVID and COVID periods," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3007-3022, July.
- Bouri, Elie & Jalkh, Naji, 2024. "Flight-to-safety across time and market conditions," International Review of Economics & Finance, Elsevier, vol. 94(C).
- Ballestra, Luca Vincenzo & Guizzardi, Andrea & Palladini, Fabio, 2019. "Forecasting and trading on the VIX futures market: A neural network approach based on open to close returns and coincident indicators," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1250-1262.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014.
"Forecasting with the Standardized Self-Perturbed Kalman Filter,"
CREATES Research Papers
2014-12, Department of Economics and Business Economics, Aarhus University.
- Stefano Grassi & Nima Nonejad & Paolo Santucci De Magistris, 2017. "Forecasting With the Standardized Self‐Perturbed Kalman Filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 318-341, March.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," Studies in Economics 1405, School of Economics, University of Kent.
- Arindam Banerjee, 2019. "Forecasting of India VIX as a Measure of Sentiment," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 268-276.
- Chen, Bin-xia & Sun, Yan-lin, 2022. "The impact of VIX on China’s financial market: A new perspective based on high-dimensional and time-varying methods," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
- Ahad, Muhammad & Imran, Zulfiqar Ali & Shahzad, Khurram, 2024. "Safe haven between European ESG and energy sector under Russian-Ukraine war: Role of sustainable investments for portfolio diversification," Energy Economics, Elsevier, vol. 138(C).
- Pierre J. Venter & Eben Maré, 2020. "GARCH Generated Volatility Indices of Bitcoin and CRIX," JRFM, MDPI, vol. 13(6), pages 1-15, June.
- Troster, Victor & Bouri, Elie & Roubaud, David, 2019. "A quantile regression analysis of flights-to-safety with implied volatilities," Resources Policy, Elsevier, vol. 62(C), pages 482-495.
- Buncic, Daniel & Gisler, Katja I.M., 2016.
"Global equity market volatility spillovers: A broader role for the United States,"
International Journal of Forecasting, Elsevier, vol. 32(4), pages 1317-1339.
- Buncic, Daniel & Gisler, Katja I. M., 2015. "Global Equity Market Volatility Spillovers: A Broader Role for the United States," Economics Working Paper Series 1508, University of St. Gallen, School of Economics and Political Science.
- Wang, Zhenkun & Bouri, Elie & Ferreira, Paulo & Shahzad, Syed Jawad Hussain & Ferrer, Román, 2022. "A grey-based correlation with multi-scale analysis: S&P 500 VIX and individual VIXs of large US company stocks," Finance Research Letters, Elsevier, vol. 48(C).
- Bucci, Andrea, 2019.
"Cholesky-ANN models for predicting multivariate realized volatility,"
MPRA Paper
95137, University Library of Munich, Germany.
- Andrea Bucci, 2020. "Cholesky–ANN models for predicting multivariate realized volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 865-876, September.
- Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
- Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Conditional jumps in volatility and their economic determinants," "Marco Fanno" Working Papers 0138, Dipartimento di Scienze Economiche "Marco Fanno".
- Jin, Jiayu & Han, Liyan & Xu, Yang, 2022. "Does the SDR stabilize investing in commodities?," International Review of Economics & Finance, Elsevier, vol. 81(C), pages 160-172.
- Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
- Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014.
"Volatility jumps and their economic determinants,"
CREATES Research Papers
2014-27, Department of Economics and Business Economics, Aarhus University.
- Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2016. "Volatility Jumps and Their Economic Determinants," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 29-80.
- Dimos S. Kambouroudis & David G. McMillan & Katerina Tsakou, 2021. "Forecasting realized volatility: The role of implied volatility, leverage effect, overnight returns, and volatility of realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1618-1639, October.
- Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
- Chang, C-L. & Hsieh, T-L. & McAleer, M.J., 2018.
"Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK,"
Econometric Institute Research Papers
EI2018-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," Documentos de Trabajo del ICAE 2018-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
- Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
- Akhilesh Prasad & Priti Bakhshi, 2022. "Forecasting the Direction of Daily Changes in the India VIX Index Using Machine Learning," JRFM, MDPI, vol. 15(12), pages 1-26, November.
- David E Allen & Vince Hooper, 2018. "Generalized Correlation Measures of Causality and Forecasts of the VIX Using Non-Linear Models," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
- González-Rivera, Gloria & Veiga, Helena, 2016. "A Bootstrap Approach for Generalized Autocontour Testing," DES - Working Papers. Statistics and Econometrics. WS 23457, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Peterburgsky, Stanley, 2024. "Size, value and volatility," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 752-763.
- Fei, Tianlun & Liu, Xiaoquan, 2021. "Herding and market volatility," International Review of Financial Analysis, Elsevier, vol. 78(C).
- Taylor, Nick, 2019. "Forecasting returns in the VIX futures market," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1193-1210.
- Yuru Sun & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Gael M. Martin, 2023. "Optimal probabilistic forecasts for risk management," Papers 2303.01651, arXiv.org.
- Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
- Delis, Panagiotis & Degiannakis, Stavros & Giannopoulos, Kostantinos, 2021.
"What should be taken into consideration when forecasting oil implied volatility index?,"
MPRA Paper
110831, University Library of Munich, Germany.
- Panagiotis Delis & Stavros Degiannakis & Konstantinos Giannopoulos, 2023. "What Should be Taken into Consideration when Forecasting Oil Implied Volatility Index?," The Energy Journal, , vol. 44(5), pages 231-250, September.
- Junting Liu & Qi Wang & Yuanyuan Zhang, 2024. "VIX option pricing through nonaffine GARCH dynamics and semianalytical formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1189-1223, July.
- Hoerova, Marie & Bekaert, Geert, 2014.
"The VIX, the variance premium and stock market volatility,"
Working Paper Series
1675, European Central Bank.
- Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
- Geert Bekaert & Marie Hoerova, 2013. "The VIX, the Variance Premium and Stock Market Volatility," NBER Working Papers 18995, National Bureau of Economic Research, Inc.
- Song, Wonho & Ryu, Doojin & Webb, Robert I., 2016. "Overseas market shocks and VKOSPI dynamics: A Markov-switching approach," Finance Research Letters, Elsevier, vol. 16(C), pages 275-282.
- Tissaoui, Kais, 2019. "Forecasting implied volatility risk indexes: International evidence using Hammerstein-ARX approach," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 232-249.
- Xiao, Jihong & Wen, Fenghua & Zhao, Yupei & Wang, Xiong, 2021. "The role of US implied volatility index in forecasting Chinese stock market volatility: Evidence from HAR models," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 311-333.
- Shawkat Hammoudeh & Tengdong Liu & Chia-Lin Chang & Michael McAleer, 2011.
"Risk Spillovers in Oil-Related CDS, Stock and Credit Markets,"
Documentos de Trabajo del ICAE
2011-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Hammoudeh, Shawkat & Liu, Tengdong & Chang, Chia-Lin & McAleer, Michael, 2013. "Risk spillovers in oil-related CDS, stock and credit markets," Energy Economics, Elsevier, vol. 36(C), pages 526-535.
- Hammoudeh, S.M. & Liu, T. & Chang, C-L. & McAleer, M.J., 2011. "Risk Spillovers in Oil-Related CDS, Stock and Credit Markets," Econometric Institute Research Papers EI 2011-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Shawkat Hammoudeh & Tengdong Liu & Chia-Lin Chang & Michael McAleer, 2011. "Risk Spillovers in Oil-Related CDS, Stock and Credit Markets," KIER Working Papers 772, Kyoto University, Institute of Economic Research.
- Shawkat Hammoudeh & Tengdong Liu & Chia-Lin Chang & Michael McAleer, 2011. "Risk Spillovers in Oil-Related CDS, Stock and Credit Markets," Working Papers in Economics 11/17, University of Canterbury, Department of Economics and Finance.
- Liang, Chao & Luo, Qin & Li, Yan & Huynh, Luu Duc Toan, 2023. "Global financial stress index and long-term volatility forecast for international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
- Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
- Ji, Qiang & Fan, Ying, 2016. "Modelling the joint dynamics of oil prices and investor fear gauge," Research in International Business and Finance, Elsevier, vol. 37(C), pages 242-251.
- Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.
- Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
- Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
- Xiao, Jihong & Wang, Yudong, 2022. "Good oil volatility, bad oil volatility, and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 953-966.
- Qadan, Mahmoud & Jacob, Maram, 2022. "The value premium and investors' appetite for risk," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 194-219.
- Shengli Chen & Zili Zhang, 2019. "Forecasting Implied Volatility Smile Surface via Deep Learning and Attention Mechanism," Papers 1912.11059, arXiv.org.
- Anupam Dutta & Debojyoti Das, 2022. "Forecasting realized volatility: New evidence from time‐varying jumps in VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2165-2189, December.
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
MPRA Paper
96276, University Library of Munich, Germany.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
Post-Print
hal-01515120, HAL.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Ma, Feng & Wang, Jiqian & Wahab, M.I.M. & Ma, Yuanhui, 2023. "Stock market volatility predictability in a data-rich world: A new insight," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1804-1819.
- Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2014.
"An Evolving Fuzzy-Garch Approach Forfinancial Volatility Modeling And Forecasting,"
Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting]
138, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
- Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2016. "Evolving Fuzzy-GARCH Approach for Financial Volatility Modeling and Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 379-398, October.
- Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Tripathy, Trilochan, 2020. "Volatility persistence in the Russian stock market," Finance Research Letters, Elsevier, vol. 32(C).
- Holger Fink & Yulia Klimova & Claudia Czado & Jakob Stober, 2016. "Regime switching vine copula models for global equity and volatility indices," Papers 1604.05598, arXiv.org.
- Psaradellis, Ioannis & Sermpinis, Georgios, 2016. "Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1268-1283.
- Geng, Jiang-Bo & Chen, Fu-Rui & Ji, Qiang & Liu, Bing-Yue, 2021. "Network connectedness between natural gas markets, uncertainty and stock markets," Energy Economics, Elsevier, vol. 95(C).
- Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
- Lehrer, Steven & Xie, Tian & Zhang, Xinyu, 2021. "Social media sentiment, model uncertainty, and volatility forecasting," Economic Modelling, Elsevier, vol. 102(C).
- Ioannis Dokas & Georgios Oikonomou & Minas Panagiotidis & Eleftherios Spyromitros, 2023. "Macroeconomic and Uncertainty Shocks’ Effects on Energy Prices: A Comprehensive Literature Review," Energies, MDPI, vol. 16(3), pages 1-35, February.
- Campos, I. & Cortazar, G. & Reyes, T., 2017. "Modeling and predicting oil VIX: Internet search volume versus traditional mariables," Energy Economics, Elsevier, vol. 66(C), pages 194-204.
- Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
- Jeng-Bau Lin & Wei Tsai, 2019. "The Relations of Oil Price Change with Fear Gauges in Global Political and Economic Environment," Energies, MDPI, vol. 12(15), pages 1-17, August.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Trilochan Tripathy, 2018. "Persistence in the Russian Stock Market Volatility Indices," CESifo Working Paper Series 7243, CESifo.
- Tuncer Yılmaz & Bülent Yıldız, 2022. "Yatırımcıların Risk İştahı Endeksi İle Korku Endeksleri Arasındaki İlişki: Türkiye’de ARDL İle Ampirik Bir Uygulama," Journal of Research in Economics, Politics & Finance, Ersan ERSOY, vol. 7(3), pages 646-676.
- Reiter-Gavish, Liron & Qadan, Mahmoud & Yagil, Joseph, 2021. "Financial advice: Who Exactly Follows It?," Research in Economics, Elsevier, vol. 75(3), pages 244-258.
- Chen & Jo-Hui & Hussain & Sabbor & Chen & Fu-Ying, 2023. "The Relationship between VIX and Technical Indicator: The Analysis of Shared-Frailty Model," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(3), pages 1-5.
- Degiannakis, Stavros & Filis, George, 2016. "Forecasting oil price realized volatility: A new approach," MPRA Paper 69105, University Library of Munich, Germany.
- Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2018. "Forecasting global stock market implied volatility indices," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 111-129.
- Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
- Saffet Akdag & Ömer İskenderoglu & Andrew Adewale Alola, 2020. "The volatility spillover effects among risk appetite indexes: insight from the VIX and the rise," Letters in Spatial and Resource Sciences, Springer, vol. 13(1), pages 49-65, April.
- Han, Heejoon & Kutan, Ali M. & Ryu, Doojin, 2015. "Effects of the US stock market return and volatility on the VKOSPI," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-34.
- Han, Heejoon & Kutan, Ali M. & Ryu, Doojin, 2015. "Modeling and predicting the market volatility index: The case of VKOSPI," Economics Discussion Papers 2015-7, Kiel Institute for the World Economy (IfW Kiel).
- Lei, Heng & Xue, Minggao & Liu, Huiling & Ye, Jing, 2023. "Precious metal as a safe haven for global ESG stocks: Portfolio implications for socially responsible investing," Resources Policy, Elsevier, vol. 80(C).
- Giovanni Bonaccolto & Massimiliano Caporin, 2016. "The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective," JRFM, MDPI, vol. 9(3), pages 1-25, July.
- Bruno Deschamps & Tianlun Fei & Ying Jiang & Xiaoquan Liu, 2022. "Procyclical volatility in Chinese stock markets," Review of Quantitative Finance and Accounting, Springer, vol. 58(3), pages 1117-1144, April.
- Wang, Ping & Han, Wei & Huang, Chengcheng & Duong, Duy, 2022. "Forecasting realised volatility from search volume and overnight sentiment: Evidence from China," Research in International Business and Finance, Elsevier, vol. 62(C).
- Eric Hillebrand & Marcelo Medeiros, 2010. "The Benefits of Bagging for Forecast Models of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 571-593.
- Ji, Qiang & Liu, Bing-Yue & Nehler, Henrik & Uddin, Gazi Salah, 2018. "Uncertainties and extreme risk spillover in the energy markets: A time-varying copula-based CoVaR approach," Energy Economics, Elsevier, vol. 76(C), pages 115-126.
- Bahram Adrangi & Arjun Chatrath & Joseph Macri & Kambiz Raffiee, 2019. "Dynamic Responses of Major Equity Markets to the US Fear Index," JRFM, MDPI, vol. 12(4), pages 1-23, September.
- Pham, Linh & Do, Hung Xuan, 2022. "Green bonds and implied volatilities: Dynamic causality, spillovers, and implications for portfolio management," Energy Economics, Elsevier, vol. 112(C).
- Jung Park, Yuen & Kutan, Ali M. & Ryu, Doojin, 2019. "The impacts of overseas market shocks on the CDS-option basis," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 622-636.
- Degiannakis, Stavros & Filis, George, 2022.
"Oil price volatility forecasts: What do investors need to know?,"
Journal of International Money and Finance, Elsevier, vol. 123(C).
- Degiannakis, Stavros & Filis, George, 2019. "Oil price volatility forecasts: What do investors need to know?," MPRA Paper 94445, University Library of Munich, Germany.
- Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
- Erhard Reschenhofer & Manveer Kaur Mangat & Christian Zwatz & Sándor Guzmics, 2020. "Evaluation of current research on stock return predictability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 334-351, March.
- Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
- Ouandlous, Arav & Barkoulas, John T. & Alhaj-Yaseen, Yaseen, 2018. "Persistence and discontinuity in the VIX dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 333-344.
- Sharma, Aarzoo, 2022. "A comparative analysis of the financialization of commodities during COVID-19 and the global financial crisis using a quantile regression approach," Resources Policy, Elsevier, vol. 78(C).
- Holger Fink & Yulia Klimova & Claudia Czado & Jakob Stöber, 2017. "Regime Switching Vine Copula Models for Global Equity and Volatility Indices," Econometrics, MDPI, vol. 5(1), pages 1-38, January.
- Uddin, Moshfique & Chowdhury, Anup & Anderson, Keith & Chaudhuri, Kausik, 2021. "The effect of COVID – 19 pandemic on global stock market volatility: Can economic strength help to manage the uncertainty?," Journal of Business Research, Elsevier, vol. 128(C), pages 31-44.
- Qadan, Mahmoud & Aharon, David Y., 2019. "How much happiness can we find in the U.S. fear Index?," Finance Research Letters, Elsevier, vol. 30(C), pages 246-258.
- Philip Stahl, 2022. "Asymptotic extrapolation of model-free implied variance: exploring structural underestimation in the VIX Index," Review of Derivatives Research, Springer, vol. 25(3), pages 315-339, October.
- Iuri H. Ferreira & Marcelo C. Medeiros, 2021. "Modeling and Forecasting Intraday Market Returns: a Machine Learning Approach," Papers 2112.15108, arXiv.org.
- Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
- Smales, L.A., 2016. "Risk-on/Risk-off: Financial market response to investor fear," Finance Research Letters, Elsevier, vol. 17(C), pages 125-134.
- Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
- Curi, Claudia & Murgia, Lucia Milena, 2023. "Forecast Targeting and Financial Stability: Evidence from the European Central Bank and Bank of England," Finance Research Letters, Elsevier, vol. 51(C).
- Marcel Scharth & Marcelo Cunha Medeiros, 2006.
"Asymmetric effects and long memory in the volatility of Dow Jones stocks,"
Textos para discussão
532, Department of Economics PUC-Rio (Brazil).
- Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
Cited by:
- Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
- Härdle, Wolfgang Karl & Hautsch, Nikolaus & Pigorsch, Uta, 2008. "Measuring and modeling risk using high-frequency data," SFB 649 Discussion Papers 2008-045, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Heejoon Han & Myung D. Park & Shen Zhang, 2015. "A Multiplicative Error Model with Heterogeneous Components for Forecasting Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 209-219, April.
- David E. Allen & Michael McAleer & Marcel Scharth, 2010.
"Realized Volatility Risk,"
KIER Working Papers
753, Kyoto University, Institute of Economic Research.
- David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," Working Papers in Economics 10/26, University of Canterbury, Department of Economics and Finance.
- David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
- David E. Allen & Michael McAleer & Marcel Scharth, 2013. "Realized volatility risk," Documentos de Trabajo del ICAE 2013-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CARF F-Series CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
- David E. Allen & Michael McAleer & Marcel Scharth, 2013. "Realized Volatility Risk," Tinbergen Institute Discussion Papers 13-092/III, Tinbergen Institute.
- Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
- Majewski, A. A. & Bormetti, G. & Corsi, F., 2013. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Working Papers 13/11, Department of Economics, City University London.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014.
"Asymmetric Realized Volatility Risk,"
Tinbergen Institute Discussion Papers
14-075/III, Tinbergen Institute.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Documentos de Trabajo del ICAE 2014-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Working Papers in Economics 14/20, University of Canterbury, Department of Economics and Finance.
- Heather M. Anderson & Farshid Vahid, 2013. "Common non-linearities in multiple series of stock market volatility," Monash Econometrics and Business Statistics Working Papers 1/13, Monash University, Department of Econometrics and Business Statistics.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020.
"Machine Learning Advances for Time Series Forecasting,"
Papers
2012.12802, arXiv.org, revised Apr 2021.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Warshaw, Evan, 2020. "Asymmetric volatility spillover between European equity and foreign exchange markets: Evidence from the frequency domain," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 1-14.
- Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2017. "Asymmetry in spillover effects: Evidence for international stock index futures markets," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 94-111.
- Eric Hillebrand & Marcelo C. Medeiros, 2012.
"Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models,"
CREATES Research Papers
2012-30, Department of Economics and Business Economics, Aarhus University.
- Eric Hillebrand & Marcelo C. Medeiros, 2016. "Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-41, January.
- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, vol. 3(1), pages 1-53, January.
- Michael McAleer & Marcelo Medeiros, 2008.
"Realized Volatility: A Review,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
- Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
- Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
- Sergii Pypko, 2015. "Volatility Forecast in Crises and Expansions," JRFM, MDPI, vol. 8(3), pages 1-26, August.
- Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
- Elsy Gómez-Ramos & Francisco Venegas-Martínez, 2013. "A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?," Analítika, Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis, vol. 6(2), pages 7-15, Diciembre.
- Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
- Markus Vogl, 2022. "Quantitative modelling frontiers: a literature review on the evolution in financial and risk modelling after the financial crisis (2008–2019)," SN Business & Economics, Springer, vol. 2(12), pages 1-69, December.
- Cem Cakmakli & Verda Ozturk, 2021. "Economic Value of Modeling the Joint Distribution of Returns and Volatility: Leverage Timing," Koç University-TUSIAD Economic Research Forum Working Papers 2110, Koc University-TUSIAD Economic Research Forum.
- Lehrer, Steven & Xie, Tian & Zhang, Xinyu, 2021. "Social media sentiment, model uncertainty, and volatility forecasting," Economic Modelling, Elsevier, vol. 102(C).
- Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Fuertes, Ana-Maria, 2016. "Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?," International Journal of Forecasting, Elsevier, vol. 32(3), pages 695-715.
- Les Oxley & Marco Reale & Carl Scarrott & Xin Zhao, 2009. "Extreme Value GARCH modelling with Bayesian Inference," Working Papers in Economics 09/05, University of Canterbury, Department of Economics and Finance.
- Allen, David E. & McAleer, Michael & Scharth, Marcel, 2011. "Monte Carlo option pricing with asymmetric realized volatility dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1247-1256.
- Adam Aleksander Majewski & Giacomo Bormetti & Fulvio Corsi, 2014. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Papers 1404.3555, arXiv.org.
- Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
- Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
- Ji‐Eun Choi & Dong Wan Shin, 2018. "Forecasts for leverage heterogeneous autoregressive models with jumps and other covariates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(6), pages 691-704, September.
- Pedro Chaim & Márcio Poletti Laurini, 2024. "Bayesian Inference for Long Memory Stochastic Volatility Models," Econometrics, MDPI, vol. 12(4), pages 1-28, November.
- Eric Hillebrand & Marcelo Medeiros, 2010. "The Benefits of Bagging for Forecast Models of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 571-593.
- Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
- Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
- Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
- Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
- Eric Hillebrand & Marcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).
Articles
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014.
"Modeling and predicting the CBOE market volatility index,"
Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
See citations under working paper version above.
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2013. "Modeling and predicting the CBOE market volatility index," Textos para discussão 342, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Marcelo Fernandes & Marcelo Cunha Medeiros & MArcelo Scharth, 2007. "Modeling and predicting the CBOE market volatility index," Textos para discussão 548, Department of Economics PUC-Rio (Brazil).
- David E. Allen & Michael McAleer & Marcel Scharth, 2014.
"Asymmetric Realized Volatility Risk,"
JRFM, MDPI, vol. 7(2), pages 1-30, June.
See citations under working paper version above.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Working Papers in Economics 14/20, University of Canterbury, Department of Economics and Finance.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Documentos de Trabajo del ICAE 2014-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Tinbergen Institute Discussion Papers 14-075/III, Tinbergen Institute.
- Siem Jan Koopman & Marcel Scharth, 2012.
"The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures,"
Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 76-115, December.
- Siem Jan Koopman & Marcel Scharth, 2011. "The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures," Tinbergen Institute Discussion Papers 11-132/4, Tinbergen Institute.
Cited by:
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014.
"Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution,"
CIRJE F-Series
CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2015. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-975, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-921, CIRJE, Faculty of Economics, University of Tokyo.
- Catania, Leopoldo & Proietti, Tommaso, 2020.
"Forecasting volatility with time-varying leverage and volatility of volatility effects,"
International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
- Leopoldo Catania & Tommaso Proietti, 2019. "Forecasting Volatility with Time-Varying Leverage and Volatility of Volatility Effects," CEIS Research Paper 450, Tor Vergata University, CEIS, revised 06 Feb 2019.
- Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017.
"High-Frequency Jump Tests: Which Test Should We Use?,"
Papers
1708.09520, arXiv.org, revised Jan 2020.
- Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
- Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2020. "High-Frequency Jump Tests: Which Test Should We Use?," Monash Econometrics and Business Statistics Working Papers 3/20, Monash University, Department of Econometrics and Business Statistics.
- Asai, M. & Chang, C-L. & McAleer, M.J., 2017.
"Realized Stochastic Volatility with General Asymmetry and Long Memory,"
Econometric Institute Research Papers
TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Chia-Lin Chang & Michael McAleer, 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Tinbergen Institute Discussion Papers 17-038/III, Tinbergen Institute.
- Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
- Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016.
"Cholesky Realized Stochastic Volatility Model,"
CIRJE F-Series
CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
- Shirota, Shinichiro & Omori, Yasuhiro & F. Lopes, Hedibert. & Piao, Haixiang, 2017. "Cholesky realized stochastic volatility model," Econometrics and Statistics, Elsevier, vol. 3(C), pages 34-59.
- Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2015. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-979, CIRJE, Faculty of Economics, University of Tokyo.
- Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
- Bekierman Jeremias & Gribisch Bastian, 2016. "Estimating stochastic volatility models using realized measures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 279-300, June.
- Asai, M. & McAleer, M.J. & Peiris, S., 2017.
"Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory,"
Econometric Institute Research Papers
EI2017-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020. "Realized stochastic volatility models with generalized Gegenbauer long memory," Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
- Manabu Asai & Michael McAleer & Shelton Peiris, 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Tinbergen Institute Discussion Papers 17-105/III, Tinbergen Institute.
- Manabu Asai & Shelton Peiris & Michael McAleer, 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Documentos de Trabajo del ICAE 2017-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Li, Chenxing & Zhang, Zehua & Zhao, Ran, 2023.
"Volatility or higher moments: Which is more important in return density forecasts of stochastic volatility model?,"
MPRA Paper
118459, University Library of Munich, Germany.
- Li, Chenxing & Zhang, Zehua & Zhao, Ran, 2024. "Volatility or higher moments: Which is more important in return density forecasts of stochastic volatility model?," Finance Research Letters, Elsevier, vol. 67(PB).
- Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
- Worapree Maneesoonthorn & David T. Frazier & Gael M. Martin, 2024. "Probabilistic Predictions of Option Prices Using Multiple Sources of Data," Papers 2412.00658, arXiv.org.
- Didit Nugroho & Takayuki Morimoto, 2015. "Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods," Computational Statistics, Springer, vol. 30(2), pages 491-516, June.
- Worapree Maneesoonthorn & Gael M Martin & Catherine S Forbes, 2018. "Dynamic price jumps: The performance of high frequency tests and measures, and the robustness of inference," Monash Econometrics and Business Statistics Working Papers 17/18, Monash University, Department of Econometrics and Business Statistics.
- Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2013.
"Realized Stochastic Volatility with Leverage and Long Memory,"
CIRJE F-Series
CIRJE-F-880, CIRJE, Faculty of Economics, University of Tokyo.
- Shirota, Shinichiro & Hizu, Takayuki & Omori, Yasuhiro, 2014. "Realized stochastic volatility with leverage and long memory," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 618-641.
- Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2012. "Realized stochastic volatility with leverage and long memory," CIRJE F-Series CIRJE-F-869, CIRJE, Faculty of Economics, University of Tokyo.
- P Gorgi & P R Hansen & P Janus & S J Koopman, 2019.
"Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model,"
Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 1-32.
- Peter Reinhard Hansen & Pawel Janus & Siem Jan Koopman, 2016. "Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model," Tinbergen Institute Discussion Papers 16-061/III, Tinbergen Institute.
- Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
- G. Mesters & S. J. Koopman & M. Ooms, 2016.
"Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 659-687, April.
- Geert Mesters & Siem Jan Koopman & Marius Ooms, 2011. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Tinbergen Institute Discussion Papers 11-090/4, Tinbergen Institute.
- Yuta Kurose & Yasuhiro Omori, 2016.
"Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity,"
CIRJE F-Series
CIRJE-F-1024, CIRJE, Faculty of Economics, University of Tokyo.
- Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
- Yuta Kurose & Yasuhiro Omori, 2018. "Multiple-lock Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1075, CIRJE, Faculty of Economics, University of Tokyo.
- Yuta Yamauchi & Yasuhiro Omori, 2018. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," Papers 1809.09928, arXiv.org, revised Mar 2019.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2013.
"Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures,"
Monash Econometrics and Business Statistics Working Papers
28/13, Monash University, Department of Econometrics and Business Statistics.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2017. "Inference on Self‐Exciting Jumps in Prices and Volatility Using High‐Frequency Measures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 504-532, April.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2014. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Papers 1401.3911, arXiv.org, revised Mar 2016.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2016. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Monash Econometrics and Business Statistics Working Papers 8/16, Monash University, Department of Econometrics and Business Statistics.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2014. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Monash Econometrics and Business Statistics Working Papers 30/14, Monash University, Department of Econometrics and Business Statistics.
- Cathy W.S. Chen & Toshiaki Watanabe, 2019. "Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 747-765, May.
- Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019.
"Approximate Bayesian forecasting,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
- David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Brendan P.M. McCabe, 2018. "Approximate Bayesian forecasting," Monash Econometrics and Business Statistics Working Papers 2/18, Monash University, Department of Econometrics and Business Statistics.
- Tingguo Zheng & Tao Song, 2014. "A Realized Stochastic Volatility Model With Box-Cox Transformation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 593-605, October.
- Takeuchi-Nogimori, Asuka, 2017. "An Empirical Analysis of Nikkei 225 Options Using Realized GARCH Models," Economic Review, Hitotsubashi University, vol. 68(2), pages 97-113, April.
- Yuta Yamauchi & Yasuhiro Omori, 2016. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations ," CIRJE F-Series CIRJE-F-1029, CIRJE, Faculty of Economics, University of Tokyo.
- Michael Creel & Dennis Kristensen, 2014.
"ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models,"
CREATES Research Papers
2014-30, Department of Economics and Business Economics, Aarhus University.
- Creel, Michael & Kristensen, Dennis, 2015. "ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 85-108.
- Asuka Takeuchi-Nogimori, 2012. "An Empirical Analysis of the Nikkei 225 Put Options Using Realized GARCH Models," Global COE Hi-Stat Discussion Paper Series gd12-241, Institute of Economic Research, Hitotsubashi University.
- Watanabe, Toshiaki & Nakajima, Jouchi, 2023. "High-frequency realized stochastic volatility model," Discussion paper series HIAS-E-127, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
- Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
- Allen, David E. & McAleer, Michael & Scharth, Marcel, 2011.
"Monte Carlo option pricing with asymmetric realized volatility dynamics,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1247-1256.
Cited by:
- Abootaleb Shirvani & Stefan Mittnik & W. Brent Lindquist & Svetlozar T. Rachev, 2021. "Bitcoin Volatility and Intrinsic Time Using Double Subordinated Levy Processes," Papers 2109.15051, arXiv.org, revised Aug 2023.
- Ledermann, Daniel & Alexander, Carol, 2012. "Further properties of random orthogonal matrix simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 83(C), pages 56-79.
- Chen, Jilong & Xu, Liao & Xu, Hao, 2022. "The impact of COVID-19 on commodity options market: Evidence from China," Economic Modelling, Elsevier, vol. 116(C).
- Scharth, Marcel & Medeiros, Marcelo C., 2009.
"Asymmetric effects and long memory in the volatility of Dow Jones stocks,"
International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
See citations under working paper version above.
- Marcel Scharth & Marcelo Cunha Medeiros, 2006. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," Textos para discussão 532, Department of Economics PUC-Rio (Brazil).