IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v471y2022ics0304380022001636.html
   My bibliography  Save this article

Autoregressive models for time series of random sums of positive variables: Application to tree growth as a function of climate and insect outbreak

Author

Listed:
  • Debaly, Zinsou Max
  • Marchand, Philippe
  • Girona, Miguel Montoro

Abstract

We present a broad class of semi-parametric models for time series of random sums of positive variables. Our methodology allows the number of terms inside the sum to be time-varying and is therefore well suited to many examples encountered in the natural sciences. We study the stability properties of the models and provide a valid statistical inference procedure to estimate the model parameters. It is shown that the proposed quasi-maximum likelihood estimator is consistent and asymptotically Gaussian distributed. This work is complemented by simulation results and applied to time series representing growth rates of white spruce (Picea glauca) trees from a few dozen sites in Québec (Canada). This time series spans 41 years, including one major spruce budworm (Choristoneura fumiferana) outbreak between 1968 and 1991. We found significant growth reductions related to budworm-induced defoliation up to two years post-outbreak. Our results also revealed the positive effects of maximum summer temperature, precipitation, and the climate moisture index on white spruce growth. We also identified the negative effects of the climate moisture index in the spring and the maximum temperature of the previous summer. However, the model’s performance on this data set was not improved when the interactions between climate and defoliation on growth were considered. This study represents a major advance in our understanding of budworm–climate–tree interactions and provides a useful tool to project the combined effects of climate and insect defoliation on tree growth in a context of greater frequency and severity of outbreaks coupled with the anticipated increases in temperature.

Suggested Citation

  • Debaly, Zinsou Max & Marchand, Philippe & Girona, Miguel Montoro, 2022. "Autoregressive models for time series of random sums of positive variables: Application to tree growth as a function of climate and insect outbreak," Ecological Modelling, Elsevier, vol. 471(C).
  • Handle: RePEc:eee:ecomod:v:471:y:2022:i:c:s0304380022001636
    DOI: 10.1016/j.ecolmodel.2022.110053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022001636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107667273, September.
    2. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    3. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
    4. Debaly, Zinsou Max & Truquet, Lionel, 2021. "A note on the stability of multivariate non-linear time series with an application to time series of counts," Statistics & Probability Letters, Elsevier, vol. 179(C).
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    7. Debaly, Zinsou Max & Truquet, Lionel, 2021. "Iterations Of Dependent Random Maps And Exogeneity In Nonlinear Dynamics," Econometric Theory, Cambridge University Press, vol. 37(6), pages 1135-1172, December.
    8. Loïc D’Orangeville & Daniel Houle & Louis Duchesne & Richard P. Phillips & Yves Bergeron & Daniel Kneeshaw, 2018. "Beneficial effects of climate warming on boreal tree growth may be transitory," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    2. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    3. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    4. Alketa Bejko & Belinda Xarba, 2021. "The Evaluation of the Drafting Process of Regional’s Development Strategies in Albania. the Research on Gjirokastra’s Region," European Journal of Interdisciplinary Studies Articles, Revistia Research and Publishing, vol. 1, September.
    5. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    6. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    7. repec:kap:iaecre:v:14:y:2008:i:1:p:112-124 is not listed on IDEAS
    8. Saulo, Helton & Balakrishnan, Narayanaswamy & Vila, Roberto, 2023. "On a quantile autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 425-448.
    9. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Papers 1604.01338, arXiv.org.
    10. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    11. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    12. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    13. Ghahramani, M. & Thavaneswaran, A., 2009. "On some properties of Autoregressive Conditional Poisson (ACP) models," Economics Letters, Elsevier, vol. 105(3), pages 273-275, December.
    14. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    15. Bodnar, Taras & Hautsch, Nikolaus, 2012. "Copula-based dynamic conditional correlation multiplicative error processes," SFB 649 Discussion Papers 2012-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. David Easley & Robert F. Engle & Maureen O'Hara & Liuren Wu, 2008. "Time-Varying Arrival Rates of Informed and Uninformed Trades," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 171-207, Spring.
    18. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
    19. Ping-Hung Chou & Pei-Shan Wu & Teng-Tsai Tu, 2014. "The Impact of Trader Behavior on Options Price Volatility," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(4), pages 503-516, April.
    20. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    21. Dmitri Koulikov, 2002. "Modeling Sequences of Long Memory Positive Weakly Stationary Random Variables," William Davidson Institute Working Papers Series 493, William Davidson Institute at the University of Michigan.
    22. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:471:y:2022:i:c:s0304380022001636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.