IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v12y2024i4p35-d1530826.html
   My bibliography  Save this article

Bayesian Inference for Long Memory Stochastic Volatility Models

Author

Listed:
  • Pedro Chaim

    (Department of Economics, Federal University of Santa Catarina, Centro Socioeconômico (CSE)–Bloco F, Florianópolis 88035-972, SC, Brazil
    These authors contributed equally to this work.)

  • Márcio Poletti Laurini

    (Department of Economics, School of Economics, Business Administration and Accounting at Ribeirão Preto, University of São Paulo, Av. dos Bandeirantes 3900, Ribeirão Preto 14040-905, SP, Brazil
    These authors contributed equally to this work.)

Abstract

We explore the application of integrated nested Laplace approximations for the Bayesian estimation of stochastic volatility models characterized by long memory. The logarithmic variance persistence in these models is represented by a Fractional Gaussian Noise process, which we approximate as a linear combination of independent first-order autoregressive processes, lending itself to a Gaussian Markov Random Field representation. Our results from Monte Carlo experiments indicate that this approach exhibits small sample properties akin to those of Markov Chain Monte Carlo estimators. Additionally, it offers the advantages of reduced computational complexity and the mitigation of posterior convergence issues. We employ this methodology to estimate volatility dependency patterns for both the SP&500 index and major cryptocurrencies. We thoroughly assess the in-sample fit and extend our analysis to the construction of out-of-sample forecasts. Furthermore, we propose multi-factor extensions and apply this method to estimate volatility measurements from high-frequency data, underscoring its exceptional computational efficiency. Our simulation results demonstrate that the INLA methodology achieves comparable accuracy to traditional MCMC methods for estimating latent parameters and volatilities in LMSV models. The proposed model extensions show strong in-sample fit and out-of-sample forecast performance, highlighting the versatility of the INLA approach. This method is particularly advantageous in high-frequency contexts, where the computational demands of traditional posterior simulations are often prohibitive.

Suggested Citation

  • Pedro Chaim & Márcio Poletti Laurini, 2024. "Bayesian Inference for Long Memory Stochastic Volatility Models," Econometrics, MDPI, vol. 12(4), pages 1-28, November.
  • Handle: RePEc:gam:jecnmx:v:12:y:2024:i:4:p:35-:d:1530826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/12/4/35/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/12/4/35/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haldrup, Niels & Vera Valdés, J. Eduardo, 2017. "Long memory, fractional integration, and cross-sectional aggregation," Journal of Econometrics, Elsevier, vol. 199(1), pages 1-11.
    2. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    3. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
    6. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    7. Eric Hillebrand & Marcelo C. Medeiros, 2016. "Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-41, January.
    8. Beran, Jan & Schützner, Martin & Ghosh, Sucharita, 2010. "From short to long memory: Aggregation and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2432-2442, November.
    9. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    10. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    11. Fleming, Jeff & Kirby, Chris, 2011. "Long memory in volatility and trading volume," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1714-1726, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    2. Long H. Vo, 2017. "Estimating Financial Volatility with High-Frequency Returns," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 2(2), pages 84-114, October.
    3. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    4. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    5. Tran, Thuy Nhung, 2022. "The Volatility of the Stock Market and Financial Cycle: GARCH Family Models," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 151-168.
    6. Feng, Yuanhua & Zhou, Chen, 2015. "Forecasting financial market activity using a semiparametric fractionally integrated Log-ACD," International Journal of Forecasting, Elsevier, vol. 31(2), pages 349-363.
    7. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
    8. Claudio Morana, 2010. "Heteroskedastic Factor Vector Autoregressive Estimation of Persistent and Non Persistent Processes Subject to Structural Breaks," ICER Working Papers - Applied Mathematics Series 36-2010, ICER - International Centre for Economic Research.
    9. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    10. Ngozi G. Emenogu & Monday Osagie Adenomon & Nwaze Obini Nweze, 2020. "On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    11. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2015. "The impact of financial crises on the risk–return tradeoff and the leverage effect," Economic Modelling, Elsevier, vol. 49(C), pages 407-418.
    12. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Papers 1604.01338, arXiv.org.
    13. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    14. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    15. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    16. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    17. CARPANTIER, Jean - François, 2010. "Commodities inventory effect," LIDAM Discussion Papers CORE 2010040, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Linton, Oliver & Xiao, Zhijie, 2019. "Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.
    19. Alessandro Palandri, 2009. "The Effects of Interest Rate Movements on Assets’ Conditional Second Moments," CREATES Research Papers 2009-32, Department of Economics and Business Economics, Aarhus University.
    20. Silvennoinen Annastiina & Teräsvirta Timo, 2016. "Testing constancy of unconditional variance in volatility models by misspecification and specification tests," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 347-364, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:12:y:2024:i:4:p:35-:d:1530826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.