IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.15108.html
   My bibliography  Save this paper

Modeling and Forecasting Intraday Market Returns: a Machine Learning Approach

Author

Listed:
  • Iuri H. Ferreira
  • Marcelo C. Medeiros

Abstract

In this paper we examine the relation between market returns and volatility measures through machine learning methods in a high-frequency environment. We implement a minute-by-minute rolling window intraday estimation method using two nonlinear models: Long-Short-Term Memory (LSTM) neural networks and Random Forests (RF). Our estimations show that the CBOE Volatility Index (VIX) is the strongest candidate predictor for intraday market returns in our analysis, specially when implemented through the LSTM model. This model also improves significantly the performance of the lagged market return as predictive variable. Finally, intraday RF estimation outputs indicate that there is no performance improvement with this method, and it may even worsen the results in some cases.

Suggested Citation

  • Iuri H. Ferreira & Marcelo C. Medeiros, 2021. "Modeling and Forecasting Intraday Market Returns: a Machine Learning Approach," Papers 2112.15108, arXiv.org.
  • Handle: RePEc:arx:papers:2112.15108
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.15108
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Alex Chinco & Adam D. Clark‐Joseph & Mao Ye, 2019. "Sparse Signals in the Cross‐Section of Returns," Journal of Finance, American Finance Association, vol. 74(1), pages 449-492, February.
    3. Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014. "Modeling and predicting the CBOE market volatility index," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
    4. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    5. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    6. Ian Martin, 2017. "What is the Expected Return on the Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 367-433.
    7. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    8. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    9. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    10. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    11. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    12. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buncic, Daniel & Gisler, Katja I.M., 2016. "Global equity market volatility spillovers: A broader role for the United States," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1317-1339.
    2. Isabel Casas & Xiuping Mao & Helena Veiga, 2018. "Reexamining financial and economic predictability with new estimators of realized variance and variance risk premium," CREATES Research Papers 2018-10, Department of Economics and Business Economics, Aarhus University.
    3. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    4. Juan M. Londono & Nancy R. Xu, 2021. "The Global Determinants of International Equity Risk Premiums," International Finance Discussion Papers 1318, Board of Governors of the Federal Reserve System (U.S.).
    5. Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.
    6. Nick Taylor, 2017. "Risk Control: Who Cares?," European Financial Management, European Financial Management Association, vol. 23(1), pages 153-179, January.
    7. Casas Villalba, Maria Isabel, 2020. "Adaptative predictability of stock market returns," DES - Working Papers. Statistics and Econometrics. WS 31648, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Pyun, Sungjune, 2019. "Variance risk in aggregate stock returns and time-varying return predictability," Journal of Financial Economics, Elsevier, vol. 132(1), pages 150-174.
    9. Yabei Zhu & Xingguo Luo & Qi Xu, 2023. "Industry variance risk premium, cross‐industry correlation, and expected returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(1), pages 3-32, January.
    10. Ma, Feng & Wang, Jiqian & Wahab, M.I.M. & Ma, Yuanhui, 2023. "Stock market volatility predictability in a data-rich world: A new insight," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1804-1819.
    11. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    12. Gagnon, Marie-Hélène & Power, Gabriel J. & Toupin, Dominique, 2023. "The sum of all fears: Forecasting international returns using option-implied risk measures," Journal of Banking & Finance, Elsevier, vol. 146(C).
    13. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    14. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    15. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    16. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Is market fear persistent? A long-memory analysis," Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
    17. Ruan, Xinfeng & Zhang, Jin E., 2019. "Moment spreads in the energy market," Energy Economics, Elsevier, vol. 81(C), pages 598-609.
    18. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    19. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Taamouti, Abderrahim, 2019. "The information content of forward moments," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 527-541.
    20. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.15108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.