IDEAS home Printed from https://ideas.repec.org/e/c/pju44.html
   My authors  Follow this author

Yuan Ju

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Yuan Ju & Youngsub Chun & Rene van den Brink, 2014. "Auctioning and Selling Positions: a noncooperative approach to queueing conflicts," Working Paper Series no91, Institute of Economic Research, Seoul National University.

    Cited by:

    1. Yuan Ju & Youngsub Chun & Rene van den Brink, 2014. "Auctioning and Selling Positions: a noncooperative approach to queueing conflicts," Working Paper Series no91, Institute of Economic Research, Seoul National University.
    2. Hu, Cheng-Cheng & Tsay, Min-Hung & Yeh, Chun-Hsien, 2018. "A study of the nucleolus in the nested cost-sharing problem: Axiomatic and strategic perspectives," Games and Economic Behavior, Elsevier, vol. 109(C), pages 82-98.
    3. Van Essen, Matt & Wooders, John, 2021. "Allocating positions fairly: Auctions and Shapley value," Journal of Economic Theory, Elsevier, vol. 196(C).
    4. Juan D. Moreno-Ternero & Min-Hung Tsay & Chun-Hsien Yeh, 2020. "A strategic justification of the Talmud rule based on lower and upper bounds," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1045-1057, December.
    5. Youngsub Chun & Manipushpak Mitra & Suresh Mutuswami, 2019. "Recent developments in the queueing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 1-23, April.
    6. Wenzhong Li & Genjiu Xu & Rong Zou & Dongshuang Hou, 2022. "The allocation of marginal surplus for cooperative games with transferable utility," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 353-377, June.
    7. Bergantiños, Gustavo & Groba, Carlos & Sartal, Antonio, 2023. "Applying the Shapley value to the tuna fishery," European Journal of Operational Research, Elsevier, vol. 309(1), pages 306-318.
    8. Leticia Lorenzo, 2019. "Comments on: recent developments in the queueing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 28-30, April.
    9. Tsay, Min-Hung & Yeh, Chun-Hsien, 2019. "Relations among the central rules in bankruptcy problems: A strategic perspective," Games and Economic Behavior, Elsevier, vol. 113(C), pages 515-532.

  2. Yuan Ju & David Wettstein, 2006. "Implementing Cooperative Solution Concepts: a Generalized Bidding Approach," Keele Economics Research Papers KERP 2006/06, Centre for Economic Research, Keele University.

    Cited by:

    1. Gustavo Bergantiños & María Gómez-Rúa, 2010. "Minimum cost spanning tree problems with groups," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 43(2), pages 227-262, May.
    2. Yuan Ju & Youngsub Chun & Rene van den Brink, 2014. "Auctioning and Selling Positions: a noncooperative approach to queueing conflicts," Working Paper Series no91, Institute of Economic Research, Seoul National University.
    3. Liang Mao, 2017. "Subgame perfect equilibrium in a bargaining model with deterministic procedures," Theory and Decision, Springer, vol. 82(4), pages 485-500, April.
    4. Sanjith Gopalakrishnan & Daniel Granot & Frieda Granot, 2021. "Consistent Allocation of Emission Responsibility in Fossil Fuel Supply Chains," Management Science, INFORMS, vol. 67(12), pages 7637-7668, December.
    5. Rene van den Brink & Gerard van der Laan & Nigel Moes, 2012. "A Strategic Implementation of the Average Tree Solution for Cycle-Free Graph Games," Tinbergen Institute Discussion Papers 12-050/1, Tinbergen Institute.
    6. Sun, Chaoran, 2022. "Bidding against a Buyout: Implementing the Shapley value and the equal surplus value," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    7. Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
    8. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Post-Print halshs-01446583, HAL.
    9. Andrea Caggese & Ander Pérez Orive, 2018. "Capital Misallocation and Secular Stagnation," Working Papers 1056, Barcelona School of Economics.
    10. Chessa, Michela & Hanaki, Nobuyuki & Lardon, Aymeric & Yamada, Takashi, 2023. "An experiment on the Nash program: A comparison of two strategic mechanisms implementing the Shapley value," Games and Economic Behavior, Elsevier, vol. 141(C), pages 88-104.
    11. David Pérez-Castrillo & Nicolas Quérou, 2010. "Smooth Multibidding Mechanisms," Working Papers 520, Barcelona School of Economics.
    12. M. J. Albizuri & J. M. Echarri & J. M. Zarzuelo, 2018. "A Non-cooperative Mechanism Yielding the Nucleolus of Airport Problems," Group Decision and Negotiation, Springer, vol. 27(1), pages 153-163, February.
    13. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A strategic implementation of the sequential equal surplus division rule for digraph cooperative games," Working Papers 2015-07, CRESE.
    14. Sylvain Béal & Sylvain Ferrières & Eric Rémila & Philippe Solal, 2017. "Axiomatic and bargaining foundation of an allocation rule for ordered tree TU-games," Post-Print halshs-01644797, HAL.
    15. Jun Su & Yuan Liang & Guangmin Wang & Genjiu Xu, 2020. "Characterizations, Potential, and an Implementation of the Shapley-Solidarity Value," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    16. Ju, Y. & Borm, P.E.M., 2006. "A Non-cooperative Approach to the Compensation Rules for Primeval Games," Discussion Paper 2006-97, Tilburg University, Center for Economic Research.
    17. Youngsub Chun & Manipushpak Mitra & Suresh Mutuswami, 2019. "Recent developments in the queueing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 1-23, April.
    18. Ju, Y. & Borm, P.E.M. & Ruys, P.H.M., 2004. "The Consensus Value : A New Solution Concept for Cooperative Games," Discussion Paper 2004-50, Tilburg University, Center for Economic Research.
    19. Ju, Yuan & Borm, Peter, 2008. "Externalities and compensation: Primeval games and solutions," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 367-382, February.
    20. Yu-Hsien Liao, 2022. "A Weighted Solution Concept under Replicated Behavior," Mathematics, MDPI, vol. 11(1), pages 1-12, December.
    21. Emilio Calvo Ramón & Esther Gutiérrez-López, 2022. "The equal collective gains value in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 249-278, March.
    22. Inés Macho-Stadler & David Pérez-Castrillo & David Wettstein, 2017. "Extensions of the Shapley value for Environments with Externalities," Working Papers 1002, Barcelona School of Economics.
    23. Ju, Yuan, 2012. "Reject and renegotiate: The Shapley value in multilateral bargaining," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 431-436.
    24. Emilio Calvo & Esther Gutiérrez-López, 2014. "A strategic approach for the discounted Shapley values," Discussion Papers in Economic Behaviour 0414, University of Valencia, ERI-CES.
    25. M. Albizuri & J. Echarri & J. Zarzuelo, 2015. "A non-cooperative mechanism for the Shapley value of airport problems," Annals of Operations Research, Springer, vol. 235(1), pages 1-11, December.
    26. Toyotaka Sakai, 2012. "Fair waste pricing: an axiomatic analysis to the NIMBY problem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(2), pages 499-521, June.
    27. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    28. Michela Chessa & Nobuyuki Hanaki & Aymeric Lardon & Takashi Yamada, 2021. "An Experiment on the Nash Program: Comparing two Mechanisms Implementing the Shapley Value," GREDEG Working Papers 2021-07, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    29. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
    30. Borm, Peter & Ju, Yuan & Wettstein, David, 2015. "Rational bargaining in games with coalitional externalities," Journal of Economic Theory, Elsevier, vol. 157(C), pages 236-254.
    31. Casajus, André & Huettner, Frank, 2018. "Calculating direct and indirect contributions of players in cooperative games via the multi-linear extension," Economics Letters, Elsevier, vol. 164(C), pages 27-30.
    32. Casajus, André & Huettner, Frank, 2018. "Decomposition of solutions and the Shapley value," Games and Economic Behavior, Elsevier, vol. 108(C), pages 37-48.
    33. Mao, Liang, 2015. "Subgame Perfect Equilibrium in a Bargaining Model with Deterministic Procedures," MPRA Paper 67859, University Library of Munich, Germany.
    34. Wenzhong Li & Genjiu Xu & Rong Zou & Dongshuang Hou, 2022. "The allocation of marginal surplus for cooperative games with transferable utility," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 353-377, June.
    35. Roberto Serrano, 2020. "Sixty-Seven Years of the Nash Program: Time for Retirement?," Working Papers 2020-20, Brown University, Department of Economics.
    36. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    37. Casajus, André & Yokote, Koji, 2017. "Weak differential marginality and the Shapley value," Journal of Economic Theory, Elsevier, vol. 167(C), pages 274-284.
    38. Panfei Sun & Dongshuang Hou & Hao Sun & Theo Driessen, 2017. "Optimization Implementation and Characterization of the Equal Allocation of Nonseparable Costs Value," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 336-352, April.
    39. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    40. Yu-Hsien Liao, 2024. "Distribution Concepts Under Duplicated Structure," Mathematics, MDPI, vol. 12(22), pages 1-15, November.
    41. Takumi Kongo, 2020. "Similarities in axiomatizations: equal surplus division value and first-price auctions," Review of Economic Design, Springer;Society for Economic Design, vol. 24(3), pages 199-213, December.

  3. Yuan Ju & Peter Borm, 2006. "A Non-cooperative Approach to the Compensation Rules for Primeval Games," Keele Economics Research Papers KERP 2006/18, Centre for Economic Research, Keele University.

    Cited by:

    1. Ju, Yuan & Borm, Peter, 2008. "Externalities and compensation: Primeval games and solutions," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 367-382, February.

  4. Yuan Ju & Peter Borm, 2005. "Externalities and Compensation:Primeval Games and Solutions," Keele Economics Research Papers KERP 2005/05, Centre for Economic Research, Keele University.

    Cited by:

    1. Ju, Y. & Wettstein, D., 2006. "Implementing Cooperative Solution Concepts : A Generalized Bidding Approach," Other publications TiSEM a0415c9e-d51e-4c93-8872-8, Tilburg University, School of Economics and Management.
    2. Ju, Y. & Borm, P.E.M., 2006. "A Non-cooperative Approach to the Compensation Rules for Primeval Games," Discussion Paper 2006-97, Tilburg University, Center for Economic Research.
    3. Ju, Y. & Borm, P.E.M. & Ruys, P.H.M., 2004. "The Consensus Value : A New Solution Concept for Cooperative Games," Discussion Paper 2004-50, Tilburg University, Center for Economic Research.
    4. Peter Borm & Yukihiko Funaki & Yuan Ju, 2020. "The Balanced Threat Agreement for Individual Externality Negotiation Problems," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(1), pages 67-85, November.

  5. Ju, Y. & Ruys, P.H.M. & Borm, P.E.M., 2004. "Compensating Losses and Sharing Surpluses in Project-Allocation Situations (version 2)," Discussion Paper 2004-37, Tilburg University, Center for Economic Research.

    Cited by:

    1. Ju, Y. & Borm, P.E.M. & Ruys, P.H.M., 2004. "The Consensus Value : A New Solution Concept for Cooperative Games," Discussion Paper 2004-50, Tilburg University, Center for Economic Research.

  6. Ju, Y., 2004. "The Consensus Value for Games in Partition Function Form," Discussion Paper 2004-60, Tilburg University, Center for Economic Research.

    Cited by:

    1. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, December.
    2. David Wettstein & Ines Macho-Stadler & David Perez-Castrillo, 2016. "Values For Environments With Externalities – The Average Approach," Working Papers 1606, Ben-Gurion University of the Negev, Department of Economics.
    3. Ju, Y. & Wettstein, D., 2006. "Implementing Cooperative Solution Concepts : A Generalized Bidding Approach," Other publications TiSEM a0415c9e-d51e-4c93-8872-8, Tilburg University, School of Economics and Management.
    4. Ju, Y. & Borm, P.E.M., 2006. "A Non-cooperative Approach to the Compensation Rules for Primeval Games," Discussion Paper 2006-97, Tilburg University, Center for Economic Research.
    5. Ju, Y. & Borm, P.E.M. & Ruys, P.H.M., 2004. "The Consensus Value : A New Solution Concept for Cooperative Games," Discussion Paper 2004-50, Tilburg University, Center for Economic Research.
    6. Ju, Yuan & Borm, Peter, 2008. "Externalities and compensation: Primeval games and solutions," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 367-382, February.
    7. Borm, Peter & Ju, Yuan & Wettstein, David, 2015. "Rational bargaining in games with coalitional externalities," Journal of Economic Theory, Elsevier, vol. 157(C), pages 236-254.
    8. Joss Erick Sánchez-Pérez, 2023. "An elementary transfers procedure for sharing the joint surplus in games with externalities/Un procedimiento elemental de transferencias para repartir el excedente conjunto en juegos con externalidade," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 38(2), pages 317-332.
    9. Peter Borm & Yukihiko Funaki & Yuan Ju, 2020. "The Balanced Threat Agreement for Individual Externality Negotiation Problems," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(1), pages 67-85, November.
    10. Joss Sánchez-Pérez, 2017. "A decomposition for the space of games with externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 205-233, March.
    11. Joss Sánchez-Pérez, 2014. "An application of the representations of symmetric groups to characterizing solutions of games in partition function form," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 24(2), pages 97-122.
    12. Sanchez-Perez, Joss, 2015. "A decomposition for the space of games with externalities," MPRA Paper 67932, University Library of Munich, Germany.

  7. Ju, Y. & Borm, P.E.M. & Ruys, P.H.M., 2004. "The Consensus Value : A New Solution Concept for Cooperative Games," Discussion Paper 2004-50, Tilburg University, Center for Economic Research.

    Cited by:

    1. Dongshuang Hou & Aymeric Lardon & Panfei Sun & Hao Sun, 2019. "Procedural and optimization implementation of the weighted ENSC value," Theory and Decision, Springer, vol. 87(2), pages 171-182, September.
    2. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    3. Molina, Elisenda & Tejada, Juan, 2012. "Pyramidal values," DES - Working Papers. Statistics and Econometrics. WS ws122418, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Sun, Chaoran, 2022. "Bidding against a Buyout: Implementing the Shapley value and the equal surplus value," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    5. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, December.
    6. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Post-Print halshs-01446583, HAL.
    7. Radzik, Tadeusz & Driessen, Theo, 2013. "On a family of values for TU-games generalizing the Shapley value," Mathematical Social Sciences, Elsevier, vol. 65(2), pages 105-111.
    8. Sylvain Béal & Eric Rémila & Philippe Solal, 2013. "A Decomposition of the Space of TU-games Using Addition and Transfer Invariance," Working Papers 2013-08, CRESE.
    9. Andrea Caggese & Ander Pérez Orive, 2018. "Capital Misallocation and Secular Stagnation," Working Papers 1056, Barcelona School of Economics.
    10. Chameni Nembua, Célestin & Demsou, Themoi, 2013. "Ordinal equivalence of values and Pigou-Dalton transfers in TU-games," MPRA Paper 44895, University Library of Munich, Germany, revised 09 Mar 2013.
    11. David Pérez-Castrillo & Nicolas Quérou, 2010. "Smooth Multibidding Mechanisms," Working Papers 520, Barcelona School of Economics.
    12. Rene van den Brink & Yukihiko Funaki, 2010. "Axiomatization and Implementation of Discounted Shapley Values," Tinbergen Institute Discussion Papers 10-065/1, Tinbergen Institute.
    13. Quant, M. & Borm, P.E.M. & Maaten, R., 2005. "A Concede-and-Divide Rule for Bankruptcy Problems," Other publications TiSEM 23e9af88-9fb0-4f9d-bad5-2, Tilburg University, School of Economics and Management.
    14. Sylvain Ferrières, 2016. "Nullified equal loss property and equal division values," Working Papers 2016-06, CRESE.
    15. Chameni Nembua, Célestin, 2010. "Linear efficient and symmetric values for TU-games: sharing the joint gain of cooperation," MPRA Paper 31249, University Library of Munich, Germany, revised 2010.
    16. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(2), pages 197-212, August.
    17. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
    18. Ju, Y., 2004. "The Consensus Value for Games in Partition Function Form," Discussion Paper 2004-60, Tilburg University, Center for Economic Research.
    19. Ramón Flores & Elisenda Molina & Juan Tejada, 2014. "Pyramidal values," Annals of Operations Research, Springer, vol. 217(1), pages 233-252, June.
    20. David Wettstein & Ines Macho-Stadler & David Perez-Castrillo, 2016. "Values For Environments With Externalities – The Average Approach," Working Papers 1606, Ben-Gurion University of the Negev, Department of Economics.
    21. Tobias Hiller, 2011. "A note on χ-values," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 58(4), pages 433-438, December.
    22. Maimo, Clovis Wendji, 2017. "Matrix representation of TU-games for Linear Efficient and Symmetric values," MPRA Paper 82416, University Library of Munich, Germany.
    23. René Brink & Youngsub Chun & Yukihiko Funaki & Boram Park, 2016. "Consistency, population solidarity, and egalitarian solutions for TU-games," Theory and Decision, Springer, vol. 81(3), pages 427-447, September.
    24. Borm, P.E.M. & Ju, Y. & Ruys, P.H.M., 2004. "Compensating Losses and Sharing Surpluses in Project-Allocation Situations (version 1)," Other publications TiSEM 9b03ea4a-f625-4fd0-ad4f-3, Tilburg University, School of Economics and Management.
    25. Sylvain Béal & Sylvain Ferrières & Eric Rémila & Philippe Solal, 2017. "Axiomatic and bargaining foundation of an allocation rule for ordered tree TU-games," Post-Print halshs-01644797, HAL.
    26. Ju, Y. & Wettstein, D., 2006. "Implementing Cooperative Solution Concepts : A Generalized Bidding Approach," Other publications TiSEM a0415c9e-d51e-4c93-8872-8, Tilburg University, School of Economics and Management.
    27. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Preserving or removing special players: What keeps your payoff unchanged in TU-games?," Mathematical Social Sciences, Elsevier, vol. 73(C), pages 23-31.
    28. Sylvain Ferrières, 2017. "Nullified equal loss property and equal division values," Theory and Decision, Springer, vol. 83(3), pages 385-406, October.
    29. Jun Su & Yuan Liang & Guangmin Wang & Genjiu Xu, 2020. "Characterizations, Potential, and an Implementation of the Shapley-Solidarity Value," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    30. Ju, Y. & Ruys, P.H.M. & Borm, P.E.M., 2004. "Compensating Losses and Sharing Surpluses in Project-Allocation Situations (version 2)," Discussion Paper 2004-37, Tilburg University, Center for Economic Research.
    31. Ju, Y. & Borm, P.E.M., 2006. "A Non-cooperative Approach to the Compensation Rules for Primeval Games," Discussion Paper 2006-97, Tilburg University, Center for Economic Research.
    32. J. C. Gonçalves-Dosantos & I. García-Jurado & J. Costa & J. M. Alonso-Meijide, 2022. "Necessary players and values," Annals of Operations Research, Springer, vol. 318(2), pages 935-961, November.
    33. Marcin Malawski, 2013. "“Procedural” values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 305-324, February.
    34. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    35. Marieke Quant & Peter Borm, 2011. "Random conjugates of bankruptcy rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(2), pages 249-266, February.
    36. Ju, Yuan & Borm, Peter, 2008. "Externalities and compensation: Primeval games and solutions," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 367-382, February.
    37. Emilio Calvo Ramón & Esther Gutiérrez-López, 2022. "The equal collective gains value in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 249-278, March.
    38. Gudmundsson, Jens, 2011. "On symmetry in the formation of stable partnerships," Working Papers 2011:29, Lund University, Department of Economics.
    39. Inés Macho-Stadler & David Pérez-Castrillo & David Wettstein, 2017. "Extensions of the Shapley value for Environments with Externalities," Working Papers 1002, Barcelona School of Economics.
    40. L. Hernández-Lamoneda & F. Sánchez-Sánchez, 2017. "Linear symmetric rankings for TU-games," Theory and Decision, Springer, vol. 82(4), pages 461-484, April.
    41. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    42. Gutiérrez-López, Esther, 2020. "Axiomatic characterizations of the egalitarian solidarity values," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 109-115.
    43. Francisco Sanchez-Sanchez & Ruben Juarez & Luis Hernandez-Lamoneda, 2008. "Solutions without dummy axiom for TU cooperative games," Economics Bulletin, AccessEcon, vol. 3(1), pages 1-9.
    44. Dritan Osmani & Richard S.J. Tol, 2007. "A short note on joint welfare maximization assumptions," Working Papers FNU-150, Research unit Sustainability and Global Change, Hamburg University, revised Oct 2007.
    45. Sylvain Béal & Éric Rémila & Philippe Solal, 2015. "Axioms of Invariance for TU-games," Post-Print halshs-01096552, HAL.
    46. Koji Yokote & Yukihiko Funaki, 2017. "Monotonicity implies linearity: characterizations of convex combinations of solutions to cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(1), pages 171-203, June.
    47. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2021. "Cohesive efficiency in TU-games: axiomatizations of variants of the Shapley value, egalitarian values and their convex combinations," Annals of Operations Research, Springer, vol. 302(1), pages 23-47, July.
    48. Zhengxing Zou & Rene van den Brink, 2020. "Sharing the Surplus and Proportional Values," Tinbergen Institute Discussion Papers 20-014/II, Tinbergen Institute.
    49. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
    50. Naoki Matsumoto & Masaki Minegishi, 2020. "Sufficient conditions for the existence of stable sets of cooperative games," Economics Bulletin, AccessEcon, vol. 40(3), pages 1958-1962.
    51. Wenzhong Li & Genjiu Xu & Rong Zou & Dongshuang Hou, 2022. "The allocation of marginal surplus for cooperative games with transferable utility," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 353-377, June.
    52. Koji Yokote & Yukihiko Funaki, 2015. "Weak Surplus Mononicity characterizes convex combination of egalitarian Shapley value and Consensus value," Working Papers 1504, Waseda University, Faculty of Political Science and Economics.
    53. Chameni Nembua, C. & Miamo Wendji, C., 2016. "Ordinal equivalence of values, Pigou–Dalton transfers and inequality in TU-games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 117-133.
    54. Zheng, Xiao-Xue & Li, Deng-Feng & Liu, Zhi & Jia, Fu & Lev, Benjamin, 2021. "Willingness-to-cede behaviour in sustainable supply chain coordination," International Journal of Production Economics, Elsevier, vol. 240(C).
    55. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Post-Print hal-03252179, HAL.
    56. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.
    57. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2019. "Cohesive efficiency in TU-games: Two extensions of the Shapley value," Working Papers 2019-03, CRESE.
    58. Zhengxing Zou & René Brink & Yukihiko Funaki, 2022. "Sharing the surplus and proportional values," Theory and Decision, Springer, vol. 93(1), pages 185-217, July.
    59. Célestin Chameni Nembua & Nicolas Gabriel Andjiga, 2008. "Linear, efficient and symmetric values for TU-games," Economics Bulletin, AccessEcon, vol. 3(71), pages 1-10.
    60. Takumi Kongo, 2018. "Effects of Players’ Nullification and Equal (Surplus) Division Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-14, March.
    61. Takumi Kongo, 2024. "Equal support from others for unproductive players: efficient and linear values that satisfy the equal treatment and weak null player out properties for cooperative games," Annals of Operations Research, Springer, vol. 338(2), pages 973-989, July.
    62. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2012. "The Sequential Equal Surplus Division for Sharing International Rivers with Bifurcations," Working Papers 2012-02, CRESE.
    63. Zhang, Li & Xu, Genjiu & Sun, Hao & Li, Wenzhong, 2023. "Players’ dummification and the dummified egalitarian non-separable contribution value," Economics Letters, Elsevier, vol. 226(C).
    64. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    65. Dritan Osmani, "undated". "A note on optimal transfer schemes, stable coalition for environmental protection and joint maximization assumption," Working Papers FNU-176, Research unit Sustainability and Global Change, Hamburg University.
    66. Nembua Célestin, Chameni & Wendji Clovis, Miamo, 2017. "On some decisive players for linear efficient and symmetric values in cooperative games with transferable utility," MPRA Paper 83670, University Library of Munich, Germany, revised 2017.
    67. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "Axiomatization of an allocation rule for ordered tree TU-games," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 132-140.
    68. Tadeusz Radzik, 2017. "On an extension of the concept of TU-games and their values," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 149-170, August.
    69. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "The sequential equal surplus division for sharing a river," MPRA Paper 37346, University Library of Munich, Germany.
    70. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    71. Hiller Tobias, 2021. "Who Bears an Employee’s Special Annual Payment?," Review of Law & Economics, De Gruyter, vol. 17(1), pages 223-237, March.
    72. J. M. Alonso-Meijide & J. Costa & I. García-Jurado & J. C. Gonçalves-Dosantos, 2020. "On egalitarian values for cooperative games with a priori unions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 672-688, October.

  8. Ju, Y., 2004. "Cooperation, compensation and transition," Other publications TiSEM 1c03cb9e-170c-43fb-a37a-5, Tilburg University, School of Economics and Management.

    Cited by:

    1. Rooderkerk, R.P., 2007. "Optimizing product lines and assortments," Other publications TiSEM fa544b38-604e-410b-a5da-1, Tilburg University, School of Economics and Management.
    2. Ju, Yuan & Borm, Peter, 2008. "Externalities and compensation: Primeval games and solutions," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 367-382, February.
    3. Hollander, S., 2007. "The merits and economic consequences of reputation : Three essays," Other publications TiSEM d9932a90-7aac-4b23-bf99-6, Tilburg University, School of Economics and Management.
    4. Eiling, E., 2007. "Essays on International Finance and Asset Pricing," Other publications TiSEM 5f891179-600e-4965-a5eb-0, Tilburg University, School of Economics and Management.

  9. Borm, P.E.M. & Ju, Y. & Ruys, P.H.M., 2004. "Compensating Losses and Sharing Surpluses in Project-Allocation Situations (version 1)," Discussion Paper 2004-6, Tilburg University, Center for Economic Research.

    Cited by:

    1. Ju, Y. & Borm, P.E.M. & Ruys, P.H.M., 2004. "The Consensus Value : A New Solution Concept for Cooperative Games," Discussion Paper 2004-50, Tilburg University, Center for Economic Research.

Articles

  1. Miguel A. Costa‐Gomes & Yuan Ju & Jiawen Li, 2019. "Role‐Reversal Consistency: An Experimental Study Of The Golden Rule," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 685-704, January.

    Cited by:

    1. Minnameier, Gerhard & Bonowski, Tim Jonas, 2021. "Morality and Trust in Impersonal Relationships," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242438, Verein für Socialpolitik / German Economic Association.

  2. Borm, Peter & Ju, Yuan & Wettstein, David, 2015. "Rational bargaining in games with coalitional externalities," Journal of Economic Theory, Elsevier, vol. 157(C), pages 236-254.

    Cited by:

    1. Sun, Chaoran, 2022. "Bidding against a Buyout: Implementing the Shapley value and the equal surplus value," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    2. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, December.
    3. Andrea Caggese & Ander Pérez Orive, 2018. "Capital Misallocation and Secular Stagnation," Working Papers 1056, Barcelona School of Economics.
    4. Montero, M.P., 1999. "Coalition Formation in Games with Externalities," Other publications TiSEM 125b271e-7a2b-4123-823d-8, Tilburg University, School of Economics and Management.
    5. Houba, Harold & Li, Duozhe & Wen, Quan, 2022. "Bargaining with costly competition for the right to propose," Journal of Mathematical Economics, Elsevier, vol. 98(C).
    6. Inés Macho-Stadler & David Pérez-Castrillo & David Wettstein, 2017. "Extensions of the Shapley value for Environments with Externalities," Working Papers 1002, Barcelona School of Economics.
    7. Roberto Serrano, 2020. "Sixty-Seven Years of the Nash Program: Time for Retirement?," Working Papers 2020-20, Brown University, Department of Economics.
    8. Peter Borm & Yukihiko Funaki & Yuan Ju, 2020. "The Balanced Threat Agreement for Individual Externality Negotiation Problems," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(1), pages 67-85, November.
    9. J. M. Alonso-Meijide & M. Álvarez-Mozos & M. G. Fiestras-Janeiro & A. Jiménez-Losada, 2021. "Marginality and convexity in partition function form games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 99-121, August.

  3. Ju, Yuan & Chun, Youngsub & van den Brink, René, 2014. "Auctioning and selling positions: A non-cooperative approach to queueing conflicts," Journal of Economic Theory, Elsevier, vol. 153(C), pages 33-45.
    See citations under working paper version above.
  4. Yuan Ju, 2013. "Efficiency and compromise: a bid-offer–counteroffer mechanism with two players," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 501-520, May.

    Cited by:

    1. Youngsub Chun & Manipushpak Mitra & Suresh Mutuswami, 2019. "Recent developments in the queueing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 1-23, April.
    2. Roberto Serrano, 2020. "Sixty-Seven Years of the Nash Program: Time for Retirement?," Working Papers 2020-20, Brown University, Department of Economics.

  5. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.

    Cited by:

    1. Michela Chessa & Nobuyuki Hanaki & Aymeric Lardon & Takashi Yamada, 2022. "The effect of choosing a proposer through a bidding procedure in implementing the Shapley value," Post-Print hal-03907377, HAL.
    2. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2021. "Monotonicity in sharing the revenues from broadcasting sports leagues," MPRA Paper 105643, University Library of Munich, Germany.
    3. Rene van den Brink & Gerard van der Laan & Nigel Moes, 2012. "A Strategic Implementation of the Average Tree Solution for Cycle-Free Graph Games," Tinbergen Institute Discussion Papers 12-050/1, Tinbergen Institute.
    4. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Post-Print halshs-01446583, HAL.
    5. Abe, Takaaki & Nakada, Satoshi, 2023. "The in-group egalitarian Owen values," Games and Economic Behavior, Elsevier, vol. 142(C), pages 1-16.
    6. Zeguang Cui & Erfang Shan & Wenrong Lyu, 2024. "Differential marginality, inessential games and convex combinations of values," Theory and Decision, Springer, vol. 96(3), pages 463-475, May.
    7. Surajit Borkotokey & Loyimee Gogoi & Dhrubajit Choudhury & Rajnish Kumar, 2022. "Solidarity induced by group contributions: the MI $$^k$$ k -value for transferable utility games," Operational Research, Springer, vol. 22(2), pages 1267-1290, April.
    8. Gustavo Bergantiños & Juan D. Moreno-Ternero, 2022. "On the axiomatic approach to sharing the revenues from broadcasting sports leagues," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 58(2), pages 321-347, February.
    9. Rene (J.R.) van den Brink & Marina Nunez & Francisco Robles, 2018. "Valuation Monotonicity, Fairness and Stability in Assignment Problems," Tinbergen Institute Discussion Papers 18-071/II, Tinbergen Institute.
    10. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(2), pages 197-212, August.
    11. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Post-Print hal-04097849, HAL.
    12. Alfredo Valencia-Toledo & Juan Vidal-Puga, 2020. "Reassignment-proof rules for land rental problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 173-193, March.
    13. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A strategic implementation of the sequential equal surplus division rule for digraph cooperative games," Working Papers 2015-07, CRESE.
    14. Ramón Flores & Elisenda Molina & Juan Tejada, 2014. "Pyramidal values," Annals of Operations Research, Springer, vol. 217(1), pages 233-252, June.
    15. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    16. Sylvain Béal & Eric Rémila & Philippe Solal, 2021. "Lexicographic solutions for coalitional rankings based on individual and collective performances," Working Papers 2021-07, CRESE.
    17. Panfei Sun & Dongshuang Hou & Hao Sun & Hui Zhang, 2017. "Process and optimization implementation of the $$\alpha $$ α -ENSC value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 293-308, October.
    18. René Brink & Youngsub Chun & Yukihiko Funaki & Boram Park, 2016. "Consistency, population solidarity, and egalitarian solutions for TU-games," Theory and Decision, Springer, vol. 81(3), pages 427-447, September.
    19. David Lowing & Kevin Techer, 2021. "Marginalism, Egalitarianism and E ciency in Multi-Choice Games," Working Papers halshs-03334056, HAL.
    20. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2019. "Allocating extra revenues from broadcasting sports leagues," MPRA Paper 97413, University Library of Munich, Germany.
    21. Jun Su & Yuan Liang & Guangmin Wang & Genjiu Xu, 2020. "Characterizations, Potential, and an Implementation of the Shapley-Solidarity Value," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    22. Surajit Borkotokey & Sujata Goala & Niharika Kakoty & Parishmita Boruah, 2022. "The component-wise egalitarian Myerson value for Network Games," Papers 2201.02793, arXiv.org.
    23. Marcin Malawski, 2013. "“Procedural” values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 305-324, February.
    24. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    25. Takanashi, Seiji, 2024. "Analysis of the core under inequality-averse utility functions," Mathematical Social Sciences, Elsevier, vol. 129(C), pages 52-60.
    26. Gustavo Bergantinos & Juan D. Moreno-Ternero, 2023. "Anonymity in sharing the revenues from broadcasting sports leagues," Papers 2303.17897, arXiv.org.
    27. André Casajus & Koji Yokote, 2019. "Weakly differentially monotonic solutions for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 979-997, September.
    28. Yokote, Koji & Kongo, Takumi & Funaki, Yukihiko, 2018. "The balanced contributions property for equal contributors," Games and Economic Behavior, Elsevier, vol. 108(C), pages 113-124.
    29. Casajus, André & Huettner, Frank, 2014. "Weakly monotonic solutions for cooperative games," Journal of Economic Theory, Elsevier, vol. 154(C), pages 162-172.
    30. Tomohiko Kawamori, 2016. "Hart–Mas-Colell implementation of the discounted Shapley value," Theory and Decision, Springer, vol. 81(3), pages 357-369, September.
    31. Dhrubajit Choudhury & Surajit Borkotokey & Rajnish Kumar & Sudipta Sarangi, 2021. "The Egalitarian Shapley value: a generalization based on coalition sizes," Annals of Operations Research, Springer, vol. 301(1), pages 55-63, June.
    32. Emilio Calvo & Esther Gutiérrez-López, 2014. "A strategic approach for the discounted Shapley values," Discussion Papers in Economic Behaviour 0414, University of Valencia, ERI-CES.
    33. Borkotokey, Surajit & Choudhury, Dhrubajit & Gogoi, Loyimee & Kumar, Rajnish, 2020. "Group contributions in TU-games: A class of k-lateral Shapley values," European Journal of Operational Research, Elsevier, vol. 286(2), pages 637-648.
    34. Wenna Wang & Hao Sun & Rene (J.R.) van den Brink & Genjiu Xu, 2018. "The family of ideal values for cooperative games," Tinbergen Institute Discussion Papers 18-002/II, Tinbergen Institute.
    35. Christian Basteck & Frank Huettner, 2023. "Coalitional Manipulations and Immunity of the Shapley Value," Papers 2310.20415, arXiv.org.
    36. Gutiérrez-López, Esther, 2020. "Axiomatic characterizations of the egalitarian solidarity values," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 109-115.
    37. Koji Yokote & Yukihiko Funaki, 2017. "Monotonicity implies linearity: characterizations of convex combinations of solutions to cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(1), pages 171-203, June.
    38. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2021. "Cohesive efficiency in TU-games: axiomatizations of variants of the Shapley value, egalitarian values and their convex combinations," Annals of Operations Research, Springer, vol. 302(1), pages 23-47, July.
    39. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
    40. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2024. "Weighted Myerson value for Network games," Papers 2402.11464, arXiv.org.
    41. Wenzhong Li & Genjiu Xu & Rong Zou & Dongshuang Hou, 2022. "The allocation of marginal surplus for cooperative games with transferable utility," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 353-377, June.
    42. Koji Yokote & Yukihiko Funaki, 2015. "Weak Surplus Mononicity characterizes convex combination of egalitarian Shapley value and Consensus value," Working Papers 1504, Waseda University, Faculty of Political Science and Economics.
    43. Zijun Li & Fanyong Meng, 2023. "The α-Egalitarian Myerson value of games with communication structure," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 311-338, June.
    44. Wenna Wang & Hao Sun & René Brink & Genjiu Xu, 2019. "The Family of Ideal Values for Cooperative Games," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1065-1086, March.
    45. Manfred Besner, 2020. "Parallel axiomatizations of weighted and multiweighted Shapley values, random order values, and the Harsanyi set," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 193-212, June.
    46. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.
    47. Rong Zou & Genjiu Xu & Wenzhong Li & Xunfeng Hu, 2020. "A coalitional compromised solution for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(4), pages 735-758, December.
    48. Abe, Takaaki, 2024. "Equal surplus sharing values for games with coalition structures," Economics Letters, Elsevier, vol. 240(C).
    49. Borkotokey, Surajit & Choudhury, Dhrubajit & Kumar, Rajnish & Sarangi, Sudipta, 2020. "Consolidating Marginalism and Egalitarianism: A New Value for Transferable Utility Games," QBS Working Paper Series 2020/12, Queen's University Belfast, Queen's Business School.
    50. Takumi Kongo, 2018. "Effects of Players’ Nullification and Equal (Surplus) Division Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-14, March.
    51. Takumi Kongo, 2024. "Equal support from others for unproductive players: efficient and linear values that satisfy the equal treatment and weak null player out properties for cooperative games," Annals of Operations Research, Springer, vol. 338(2), pages 973-989, July.
    52. Marco Rogna, 2020. "The Burning Coalition Bargaining Model," BEMPS - Bozen Economics & Management Paper Series BEMPS69, Faculty of Economics and Management at the Free University of Bozen.
    53. Valencia-Toledo, Alfredo & Vidal-Puga, Juan, 2015. "Non-manipulable rules for land rental problems," MPRA Paper 67334, University Library of Munich, Germany.
    54. Norman Kleinberg, 2015. "A note on the Sobolev consistency of linear symmetric values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(4), pages 765-779, April.
    55. Zhang, Li & Xu, Genjiu & Sun, Hao & Li, Wenzhong, 2023. "Players’ dummification and the dummified egalitarian non-separable contribution value," Economics Letters, Elsevier, vol. 226(C).
    56. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    57. Emilio Calvo & Esther Gutiérrez, 2012. "Weighted Solidarity Values," Discussion Papers in Economic Behaviour 0212, University of Valencia, ERI-CES.
    58. Besner, Manfred, 2019. "Parallel axiomatizations of weighted and multiweighted Shapley values, random order values, and the Harsanyi set," MPRA Paper 92771, University Library of Munich, Germany.
    59. Casajus, André & Yokote, Koji, 2017. "Weak differential marginality and the Shapley value," Journal of Economic Theory, Elsevier, vol. 167(C), pages 274-284.
    60. Tadeusz Radzik, 2017. "On an extension of the concept of TU-games and their values," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 149-170, August.
    61. Tadeusz Radzik & Theo Driessen, 2016. "Modeling values for TU-games using generalized versions of consistency, standardness and the null player property," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(2), pages 179-205, April.
    62. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    63. Norman L. Kleinberg, 2018. "A note on associated consistency and linear, symmetric values," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(3), pages 913-925, September.
    64. Takaaki Abe & Satoshi Nakada, 2019. "The weighted-egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(2), pages 197-213, February.
    65. Hu, Xun-Feng, 2019. "Coalitional surplus desirability and the equal surplus division value," Economics Letters, Elsevier, vol. 179(C), pages 1-4.
    66. Takaaki Abe & Satoshi Nakada, 2023. "Core stability of the Shapley value for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 60(4), pages 523-543, May.
    67. Rogna, Marco, 2021. "The central core and the mid-central core as novel set-valued and point-valued solution concepts for transferable utility coalitional games," Mathematical Social Sciences, Elsevier, vol. 109(C), pages 1-11.
    68. Estela Sánchez-Rodríguez & Miguel Ángel Mirás Calvo & Carmen Quinteiro Sandomingo & Iago Núñez Lugilde, 2024. "Coalition-weighted Shapley values," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 547-577, June.
    69. Zou, Zhengxing & Tan, Zhibin, 2023. "Axiomatizations of convex compromise rules for redistribution of non-negative income," Economics Letters, Elsevier, vol. 229(C).
    70. Takaaki Abe & Satoshi Nakada, 2018. "Generalized Potentials, Value, and Core," Discussion Paper Series DP2018-19, Research Institute for Economics & Business Administration, Kobe University.
    71. Surajit Borkotokey & Dhrubajit Choudhury & Rajnish Kumar & Sudipta Sarangi, 2023. "A new value for cooperative games based on coalition size," International Journal of Economic Theory, The International Society for Economic Theory, vol. 19(4), pages 830-854, December.

  6. Ju, Yuan, 2012. "Reject and renegotiate: The Shapley value in multilateral bargaining," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 431-436.

    Cited by:

    1. Sun, Chaoran, 2022. "Bidding against a Buyout: Implementing the Shapley value and the equal surplus value," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A strategic implementation of the sequential equal surplus division rule for digraph cooperative games," Working Papers 2015-07, CRESE.
    3. Roberto Serrano, 2020. "Sixty-Seven Years of the Nash Program: Time for Retirement?," Working Papers 2020-20, Brown University, Department of Economics.

  7. Yuan Ju & David Wettstein, 2009. "Implementing cooperative solution concepts: a generalized bidding approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(2), pages 307-330, May.
    See citations under working paper version above.
  8. Ju, Yuan & Borm, Peter, 2008. "Externalities and compensation: Primeval games and solutions," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 367-382, February.
    See citations under working paper version above.
  9. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    See citations under working paper version above.
  10. Yuan Ju, 2007. "The Consensus Value For Games In Partition Function Form," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 437-452.
    See citations under working paper version above.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.