IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v91y2021i1d10.1007_s11238-020-09781-1.html
   My bibliography  Save this article

Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values

Author

Listed:
  • Koji Yokote

    (Waseda University)

  • Takumi Kongo

    (Fukuoka University)

  • Yukihiko Funaki

    (Waseda University)

Abstract

In cooperative game theory with transferable utilities (TU games), there are two well-established ways of redistributing Shapley value payoffs: using egalitarian Shapley values, and using consensus values. We present parallel characterizations of these classes of solutions. Together with the (weaker) axioms that characterize the original Shapley value, those that specify the redistribution methods characterize the two classes of values. For the class of egalitarian Shapley values, we focus on redistributions in one-person unanimity games from two perspectives: allowing the worth of coalitions to vary, while keeping the player set fixed; and allowing the player set to change, while keeping the worth of coalitions fixed. This class of values is characterized by efficiency, the balanced contributions property for equal contributors, weak covariance, a proportionately decreasing redistribution in one-person unanimity games, desirability, and null players in unanimity games. For the class of consensus values, we concentrate on redistributions in $$(n-1)$$ ( n - 1 ) -person unanimity games from the same two perspectives. This class of values is characterized by efficiency, the balanced contributions property for equal contributors to social surplus, complement weak covariance, a proportionately decreasing redistribution in $$(n-1)$$ ( n - 1 ) -person unanimity games, desirability, and null players in unanimity games.

Suggested Citation

  • Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
  • Handle: RePEc:kap:theord:v:91:y:2021:i:1:d:10.1007_s11238-020-09781-1
    DOI: 10.1007/s11238-020-09781-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11238-020-09781-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11238-020-09781-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oishi, Takayuki & Nakayama, Mikio & Hokari, Toru & Funaki, Yukihiko, 2016. "Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 44-53.
    2. Moulin, Herve, 1985. "The separability axiom and equal-sharing methods," Journal of Economic Theory, Elsevier, vol. 36(1), pages 120-148, June.
    3. Hu, Xun-Feng, 2019. "Coalitional surplus desirability and the equal surplus division value," Economics Letters, Elsevier, vol. 179(C), pages 1-4.
    4. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    5. René Brink & Youngsub Chun & Yukihiko Funaki & Boram Park, 2016. "Consistency, population solidarity, and egalitarian solutions for TU-games," Theory and Decision, Springer, vol. 81(3), pages 427-447, September.
    6. Moulin,Hervi, 1991. "Axioms of Cooperative Decision Making," Cambridge Books, Cambridge University Press, number 9780521424585.
    7. Takumi Kongo, 2018. "Effects of Players’ Nullification and Equal (Surplus) Division Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-14, March.
    8. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    9. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    10. Casajus, André & Huettner, Frank, 2013. "Null players, solidarity, and the egalitarian Shapley values," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 58-61.
    11. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Preserving or removing special players: What keeps your payoff unchanged in TU-games?," Mathematical Social Sciences, Elsevier, vol. 73(C), pages 23-31.
    12. Yuan Ju & David Wettstein, 2009. "Implementing cooperative solution concepts: a generalized bidding approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(2), pages 307-330, May.
    13. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
    14. Moulin,Hervi, 1989. "Axioms of Cooperative Decision Making," Cambridge Books, Cambridge University Press, number 9780521360555.
    15. Sylvain Béal & Marc Deschamps & Philippe Solal, 2016. "Comparable Axiomatizations of Two Allocation Rules for Cooperative Games with Transferable Utility and Their Subclass of Data Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 18(6), pages 992-1004, December.
    16. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    17. Marcin Malawski, 2013. "“Procedural” values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 305-324, February.
    18. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    19. Jean J. M. Derks & Hans H. Haller, 1999. "Null Players Out? Linear Values For Games With Variable Supports," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 301-314.
    20. Yan-An Hwang, 2006. "Associated consistency and equal allocation of nonseparable costs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 709-719, August.
    21. Yokote, Koji & Kongo, Takumi & Funaki, Yukihiko, 2018. "The balanced contributions property for equal contributors," Games and Economic Behavior, Elsevier, vol. 108(C), pages 113-124.
    22. William Thomson, 1983. "The Fair Division of a Fixed Supply Among a Growing Population," Mathematics of Operations Research, INFORMS, vol. 8(3), pages 319-326, August.
    23. Sylvain Ferrières, 2016. "Nullified equal loss property and equal division values," Working Papers 2016-06, CRESE.
    24. Casajus, André & Huettner, Frank, 2014. "Null, nullifying, or dummifying players: The difference between the Shapley value, the equal division value, and the equal surplus division value," Economics Letters, Elsevier, vol. 122(2), pages 167-169.
    25. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Correction to: Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(3), pages 555-555, October.
    26. Sylvain Ferrières, 2016. "Smoothness, nullified equal loss property and equal division values," Working Papers 2016-01, CRESE.
    27. Casajus, André, 2015. "Monotonic redistribution of performance-based allocations: a case for proportional taxation," Theoretical Economics, Econometric Society, vol. 10(3), September.
    28. Casajus, André & Huettner, Frank, 2014. "Weakly monotonic solutions for cooperative games," Journal of Economic Theory, Elsevier, vol. 154(C), pages 162-172.
    29. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(1), pages 43-48.
    30. Chun, Youngsub, 1989. "A new axiomatization of the shapley value," Games and Economic Behavior, Elsevier, vol. 1(2), pages 119-130, June.
    31. Casajus, André, 2016. "Differentially monotonic redistribution of income," Economics Letters, Elsevier, vol. 141(C), pages 112-115.
    32. Yokote, Koji & Casajus, André, 2017. "Weak differential monotonicity, flat tax, and basic income," Economics Letters, Elsevier, vol. 151(C), pages 100-103.
    33. Koji Yokote & Yukihiko Funaki, 2017. "Monotonicity implies linearity: characterizations of convex combinations of solutions to cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(1), pages 171-203, June.
    34. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(2), pages 197-212, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abe, Takaaki & Nakada, Satoshi, 2023. "The in-group egalitarian Owen values," Games and Economic Behavior, Elsevier, vol. 142(C), pages 1-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(2), pages 197-212, August.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    3. Sylvain Ferrières, 2017. "Nullified equal loss property and equal division values," Theory and Decision, Springer, vol. 83(3), pages 385-406, October.
    4. Abe, Takaaki & Nakada, Satoshi, 2023. "The in-group egalitarian Owen values," Games and Economic Behavior, Elsevier, vol. 142(C), pages 1-16.
    5. Takumi Kongo, 2018. "Effects of Players’ Nullification and Equal (Surplus) Division Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-14, March.
    6. Emilio Calvo Ramón & Esther Gutiérrez-López, 2022. "The equal collective gains value in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 249-278, March.
    7. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    8. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2021. "Cohesive efficiency in TU-games: axiomatizations of variants of the Shapley value, egalitarian values and their convex combinations," Annals of Operations Research, Springer, vol. 302(1), pages 23-47, July.
    9. Xun-Feng Hu & Deng-Feng Li, 2021. "The Equal Surplus Division Value for Cooperative Games with a Level Structure," Group Decision and Negotiation, Springer, vol. 30(6), pages 1315-1341, December.
    10. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Preserving or removing special players: What keeps your payoff unchanged in TU-games?," Mathematical Social Sciences, Elsevier, vol. 73(C), pages 23-31.
    11. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    12. Takumi Kongo, 2020. "Similarities in axiomatizations: equal surplus division value and first-price auctions," Review of Economic Design, Springer;Society for Economic Design, vol. 24(3), pages 199-213, December.
    13. Koji Yokote & Yukihiko Funaki, 2017. "Monotonicity implies linearity: characterizations of convex combinations of solutions to cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(1), pages 171-203, June.
    14. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    15. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Working Papers 2020-01, CRESE.
    16. Tadeusz Radzik, 2017. "On an extension of the concept of TU-games and their values," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 149-170, August.
    17. Hu, Xun-Feng, 2019. "Coalitional surplus desirability and the equal surplus division value," Economics Letters, Elsevier, vol. 179(C), pages 1-4.
    18. Sylvain Ferrières, 2016. "Nullified equal loss property and equal division values," Working Papers 2016-06, CRESE.
    19. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
    20. Wenzhong Li & Genjiu Xu & Rong Zou & Dongshuang Hou, 2022. "The allocation of marginal surplus for cooperative games with transferable utility," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 353-377, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:91:y:2021:i:1:d:10.1007_s11238-020-09781-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.