IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v318y2022i2d10.1007_s10479-021-03950-3.html
   My bibliography  Save this article

Necessary players and values

Author

Listed:
  • J. C. Gonçalves-Dosantos

    (Universidade da Coruña)

  • I. García-Jurado

    (Universidade da Coruña)

  • J. Costa

    (Universidade da Coruña)

  • J. M. Alonso-Meijide

    (Universidade de Santiago de Compostela)

Abstract

In this paper we introduce the $$\Gamma $$ Γ value, a new value for cooperative games with transferable utility. We also provide an axiomatic characterization of the $$\Gamma $$ Γ value based on a property concerning the so-called necessary players. A necessary player of a game is one without which the characteristic function is zero. We illustrate the performance of the $$\Gamma $$ Γ value in a particular cost allocation problem that arises when the owners of the apartments in a building plan to install an elevator and share its installation cost; in the resulting example we compare the proposals of the $$\Gamma $$ Γ value, the equal division value and the Shapley value in two different scenarios. In addition, we propose an extension of the $$\Gamma $$ Γ value for cooperative games with transferable utility and with a coalition structure. Finally, we provide axiomatic characterizations of the coalitional $$\Gamma $$ Γ value and of the Owen and Banzhaf-Owen values using alternative properties concerning necessary players.

Suggested Citation

  • J. C. Gonçalves-Dosantos & I. García-Jurado & J. Costa & J. M. Alonso-Meijide, 2022. "Necessary players and values," Annals of Operations Research, Springer, vol. 318(2), pages 935-961, November.
  • Handle: RePEc:spr:annopr:v:318:y:2022:i:2:d:10.1007_s10479-021-03950-3
    DOI: 10.1007/s10479-021-03950-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-03950-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-03950-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    2. André Casajus, 2010. "Another characterization of the Owen value without the additivity axiom," Theory and Decision, Springer, vol. 69(4), pages 523-536, October.
    3. Amer, Rafael & Carreras, Francese & Gimenez, Jose Miguel, 2002. "The modified Banzhaf value for games with coalition structure: an axiomatic characterization," Mathematical Social Sciences, Elsevier, vol. 43(1), pages 45-54, January.
    4. Tijs, Stef & Meca, Ana & Lopez, Marco A., 2005. "Benefit sharing in holding situations," European Journal of Operational Research, Elsevier, vol. 162(1), pages 251-269, April.
    5. José Alonso-Meijide & M. Fiestras-Janeiro, 2002. "Modification of the Banzhaf Value for Games with a Coalition Structure," Annals of Operations Research, Springer, vol. 109(1), pages 213-227, January.
    6. Benati, Stefano & López-Blázquez, Fernando & Puerto, Justo, 2019. "A stochastic approach to approximate values in cooperative games," European Journal of Operational Research, Elsevier, vol. 279(1), pages 93-106.
    7. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Guillermo Owen, 1975. "Multilinear extensions and the banzhaf value," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 22(4), pages 741-750, December.
    9. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Post-Print hal-03252179, HAL.
    10. Gustavo Bergantiños & Juan D. Moreno-Ternero, 2022. "On the axiomatic approach to sharing the revenues from broadcasting sports leagues," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 58(2), pages 321-347, February.
    11. Yang, Zhihua & Zhang, Qianwei, 2015. "Resource allocation based on DEA and modified Shapley value," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 280-286.
    12. Anna Khmelnitskaya & Elena Yanovskaya, 2007. "Owen coalitional value without additivity axiom," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 255-261, October.
    13. Tijs, S.H. & Meca, A. & Lopez, M.A., 2005. "Benefit sharing in holding situations," Other publications TiSEM 718b8e18-eb6f-407b-a9cd-e, Tilburg University, School of Economics and Management.
    14. J. M. Alonso-Meijide & J. Costa & I. García-Jurado & J. C. Gonçalves-Dosantos, 2020. "On egalitarian values for cooperative games with a priori unions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 672-688, October.
    15. Carreras, Francesc & Puente, María Albina, 2015. "Coalitional multinomial probabilistic values," European Journal of Operational Research, Elsevier, vol. 245(1), pages 236-246.
    16. Francesc Carreras & María Albina Puente, 2015. "Multinomial Probabilistic Values," Group Decision and Negotiation, Springer, vol. 24(6), pages 981-991, November.
    17. Vito Fragnelli & Anna Iandolino, 2004. "A cost allocation problem in urban solid wastes collection and disposal," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(3), pages 447-463, July.
    18. J. C. Gonçalves-Dosantos & I. García-Jurado & J. Costa, 2020. "Sharing delay costs in stochastic scheduling problems with delays," 4OR, Springer, vol. 18(4), pages 457-476, December.
    19. Gustavo Bergantiños & Juan D. Moreno-Ternero, 2020. "Sharing the Revenues from Broadcasting Sport Events," Management Science, INFORMS, vol. 66(6), pages 2417-2431, June.
    20. Wenna Wang & Hao Sun & René Brink & Genjiu Xu, 2019. "The Family of Ideal Values for Cooperative Games," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1065-1086, March.
    21. Ruiz, Luis M. & Valenciano, Federico & Zarzuelo, Jose M., 1998. "The Family of Least Square Values for Transferable Utility Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 109-130, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. André Casajus & Rodrigue Tido Takeng, 2022. "Second-order productivity, second-order payoffs, and the Owen value," Post-Print hal-03798448, HAL.
    2. André Casajus & Rodrigue Tido Takeng, 2023. "Second-order productivity, second-order payoffs, and the Owen value," Annals of Operations Research, Springer, vol. 320(1), pages 1-13, January.
    3. Michael Jones & Jennifer Wilson, 2013. "Two-step coalition values for multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 65-99, February.
    4. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2020. "Allocating extra revenues from broadcasting sports leagues," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 65-73.
    5. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    6. Fatemeh Babaei & Hamidreza Navidi & Stefano Moretti, 2022. "A bankruptcy approach to solve the fixed cost allocation problem in transport systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 332-358, July.
    7. René Van Den Brink & Agnieszka Rusinowska, 2023. "Degree Centrality, von Neumann-Morgenstern Expected Utility and Externalities in Networks," Documents de travail du Centre d'Economie de la Sorbonne 23012r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jun 2024.
    8. René Van Den Brink & Agnieszka Rusinowska, 2023. "Degree Centrality, von Neumann-Morgenstern Expected Utility and Externalities in Networks," Documents de travail du Centre d'Economie de la Sorbonne 23012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. van den Brink, Rene & van der Laan, Gerard, 2005. "A class of consistent share functions for games in coalition structure," Games and Economic Behavior, Elsevier, vol. 51(1), pages 193-212, April.
    10. Jens Gudmundsson & Jens Leth Hougaard & Chiu Yu Ko, 2022. "Sharing sequentially triggered losses: Automatic conflict resolution through smart contracts," IFRO Working Paper 2020/05, University of Copenhagen, Department of Food and Resource Economics.
    11. Meng, Fanyong & Chen, Xiaohong & Zhang, Qiang, 2015. "A coalitional value for games on convex geometries with a coalition structure," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 605-614.
    12. Emilio Calvo, 2021. "Redistribution of tax resources: a cooperative game theory approach," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(4), pages 633-686, December.
    13. van den Brink, René & Rusinowska, Agnieszka, 2022. "The degree measure as utility function over positions in graphs and digraphs," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1033-1044.
    14. Jilei Shi & Erfang Shan, 2021. "The Banzhaf value for generalized probabilistic communication situations," Annals of Operations Research, Springer, vol. 301(1), pages 225-244, June.
    15. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    16. Benati, Stefano & López-Blázquez, Fernando & Puerto, Justo, 2019. "A stochastic approach to approximate values in cooperative games," European Journal of Operational Research, Elsevier, vol. 279(1), pages 93-106.
    17. Sylvain Béal & Marc Deschamps & Mostapha Diss & Rodrigue Tido Takeng, 2024. "Cooperative games with diversity constraints," Working Papers hal-04447373, HAL.
    18. Silvia Lorenzo-Freire, 2017. "New characterizations of the Owen and Banzhaf–Owen values using the intracoalitional balanced contributions property," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 579-600, October.
    19. G. Bergantiños & Juan D. Moreno-Ternero, 2024. "Anonymity in sharing the revenues from broadcasting sports leagues," Annals of Operations Research, Springer, vol. 336(3), pages 1395-1417, May.
    20. A. Saavedra-Nieves & M. G. Fiestras-Janeiro, 2021. "Sampling methods to estimate the Banzhaf–Owen value," Annals of Operations Research, Springer, vol. 301(1), pages 199-223, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:318:y:2022:i:2:d:10.1007_s10479-021-03950-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.