IDEAS home Printed from https://ideas.repec.org/p/kob/dpaper/dp2018-19.html
   My bibliography  Save this paper

Generalized Potentials, Value, and Core

Author

Listed:
  • Takaaki Abe

    (Graduate School of Economics, Waseda University)

  • Satoshi Nakada

    (Department of Business Economics, Tokyo University of Science)

Abstract

Our objective is to analyze the relationship between the Shapley value and the core from the perspective of the potential of a game. To this end, we introduce a new concept, generalized HM-potential, which is a generalization of the potential function defined by Hart and Mas-colell (1989). We show that the Shapley value lies in the core if and only if the maximum of the generalized HM-potential of a game is less than a cutoff value. Moreover, we show that this is equivalent to the minimum of the generalized HM-potential of a game being greater than another, different cutoff value. We also provide a geometric characterization of the class of games in which the Shapley value lies in the core, which also shows the relationship with convex games and average convex games as a corollary. Our results suggest a new approach to utilizing the potential function in cooperative game theory.

Suggested Citation

  • Takaaki Abe & Satoshi Nakada, 2018. "Generalized Potentials, Value, and Core," Discussion Paper Series DP2018-19, Research Institute for Economics & Business Administration, Kobe University.
  • Handle: RePEc:kob:dpaper:dp2018-19
    as

    Download full text from publisher

    File URL: https://www.rieb.kobe-u.ac.jp/academic/ra/dp/English/DP2018-19.pdf
    File Function: First version, 2018
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chun, Youngsub, 1988. "The proportional solution for rights problems," Mathematical Social Sciences, Elsevier, vol. 15(3), pages 231-246, June.
    2. Hart, Oliver & Moore, John, 1990. "Property Rights and the Nature of the Firm," Journal of Political Economy, University of Chicago Press, vol. 98(6), pages 1119-1158, December.
    3. Moulin, Herve, 1985. "The separability axiom and equal-sharing methods," Journal of Economic Theory, Elsevier, vol. 36(1), pages 120-148, June.
    4. Inarra, Elena & Usategui, Jose M, 1993. "The Shapley Value and Average Convex Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(1), pages 13-29.
    5. Marinacci, Massimo & Montrucchio, Luigi, 2004. "A characterization of the core of convex games through Gateaux derivatives," Journal of Economic Theory, Elsevier, vol. 116(2), pages 229-248, June.
    6. Chun, Youngsub, 1991. "On the Symmetric and Weighted Shapley Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(2), pages 183-190.
    7. Peleg, B, 1986. "On the Reduced Game Property and Its Converse," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 187-200.
    8. Gul, Faruk, 1989. "Bargaining Foundations of Shapley Value," Econometrica, Econometric Society, vol. 57(1), pages 81-95, January.
    9. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    10. André Casajus, 2011. "Differential marginality, van den Brink fairness, and the Shapley value," Theory and Decision, Springer, vol. 71(2), pages 163-174, August.
    11. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
    12. Yokote, Koji & Funaki, Yukihiko & Kamijo, Yoshio, 2017. "Coincidence of the Shapley value with other solutions satisfying covariance," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 1-9.
    13. Casajus, André & Huettner, Frank, 2013. "Null players, solidarity, and the egalitarian Shapley values," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 58-61.
    14. Ui, Takashi, 2001. "Robust Equilibria of Potential Games," Econometrica, Econometric Society, vol. 69(5), pages 1373-1380, September.
    15. Hofbauer, Josef & Sorger, Gerhard, 1999. "Perfect Foresight and Equilibrium Selection in Symmetric Potential Games," Journal of Economic Theory, Elsevier, vol. 85(1), pages 1-23, March.
    16. Koji Yokote, 2015. "Weak addition invariance and axiomatization of the weighted Shapley value," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 275-293, May.
    17. Ui, Takashi, 2000. "A Shapley Value Representation of Potential Games," Games and Economic Behavior, Elsevier, vol. 31(1), pages 121-135, April.
    18. Yokote, Koji & Funaki, Yukihiko & Kamijo, Yoshio, 2016. "A new basis and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 21-24.
    19. Josef Hofbauer & Gerhard Sorger, 2002. "A Differential Game Approach To Evolutionary Equilibrium Selection," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 17-31.
    20. Perry, Motty & Reny, Philip J, 1994. "A Noncooperative View of Coalition Formation and the Core," Econometrica, Econometric Society, vol. 62(4), pages 795-817, July.
    21. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    22. Morris, Stephen & Ui, Takashi, 2005. "Generalized potentials and robust sets of equilibria," Journal of Economic Theory, Elsevier, vol. 124(1), pages 45-78, September.
    23. Tadenuma, K, 1992. "Reduced Games, Consistency, and the Core," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(4), pages 325-334.
    24. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    25. Casajus, André & Huettner, Frank, 2014. "Weakly monotonic solutions for cooperative games," Journal of Economic Theory, Elsevier, vol. 154(C), pages 162-172.
    26. Koji Yokote & Yukihiko Funaki, 2017. "Monotonicity implies linearity: characterizations of convex combinations of solutions to cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(1), pages 171-203, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takaaki Abe & Satoshi Nakada, 2023. "Core stability of the Shapley value for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 60(4), pages 523-543, May.
    2. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2021. "Cohesive efficiency in TU-games: axiomatizations of variants of the Shapley value, egalitarian values and their convex combinations," Annals of Operations Research, Springer, vol. 302(1), pages 23-47, July.
    3. Takaaki Abe & Satoshi Nakada, 2019. "The weighted-egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(2), pages 197-213, February.
    4. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    5. Borkotokey, Surajit & Choudhury, Dhrubajit & Kumar, Rajnish & Sarangi, Sudipta, 2020. "Consolidating Marginalism and Egalitarianism: A New Value for Transferable Utility Games," QBS Working Paper Series 2020/12, Queen's University Belfast, Queen's Business School.
    6. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    7. Dhrubajit Choudhury & Surajit Borkotokey & Rajnish Kumar & Sudipta Sarangi, 2021. "The Egalitarian Shapley value: a generalization based on coalition sizes," Annals of Operations Research, Springer, vol. 301(1), pages 55-63, June.
    8. Rebelo, S., 1997. "On the Determinant of Economic Growth," RCER Working Papers 443, University of Rochester - Center for Economic Research (RCER).
    9. Besner, Manfred, 2022. "The grand surplus value and repeated cooperative cross-games with coalitional collaboration," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    10. Pérez-Castrillo, David & Sun, Chaoran, 2021. "Value-free reductions," Games and Economic Behavior, Elsevier, vol. 130(C), pages 543-568.
    11. Abe, Takaaki & Nakada, Satoshi, 2023. "The in-group egalitarian Owen values," Games and Economic Behavior, Elsevier, vol. 142(C), pages 1-16.
    12. Casajus, André & Yokote, Koji, 2017. "Weak differential marginality and the Shapley value," Journal of Economic Theory, Elsevier, vol. 167(C), pages 274-284.
    13. Gutiérrez-López, Esther, 2020. "Axiomatic characterizations of the egalitarian solidarity values," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 109-115.
    14. Oyama, Daisuke & Tercieux, Olivier, 2009. "Iterated potential and robustness of equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1726-1769, July.
    15. van den Brink, René & Núñez, Marina & Robles, Francisco, 2021. "Valuation monotonicity, fairness and stability in assignment problems," Journal of Economic Theory, Elsevier, vol. 195(C).
    16. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    17. Hu, Cheng-Cheng & Tsay, Min-Hung & Yeh, Chun-Hsien, 2018. "A study of the nucleolus in the nested cost-sharing problem: Axiomatic and strategic perspectives," Games and Economic Behavior, Elsevier, vol. 109(C), pages 82-98.
    18. Surajit Borkotokey & Sujata Goala & Niharika Kakoty & Parishmita Boruah, 2022. "The component-wise egalitarian Myerson value for Network Games," Papers 2201.02793, arXiv.org.
    19. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    20. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.

    More about this item

    Keywords

    Shapley value; Core; Potential; Cooperative game;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kob:dpaper:dp2018-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Office of Promoting Research Collaboration, Research Institute for Economics & Business Administration, Kobe University (email available below). General contact details of provider: https://edirc.repec.org/data/rikobjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.