IDEAS home Printed from https://ideas.repec.org/p/gre/wpaper/2018-20.html
   My bibliography  Save this paper

Procedural and Optimization Implementation of the Weighted ENSC Value

Author

Listed:
  • Dongshuang Hou

    (Department of Applied Mathematics, Northwestern Polytechnical University)

  • Aymeric Lardon

    (Université Côte d'Azur, France
    GREDEG CNRS)

  • Panfei Sun

    (Department of Applied Mathematics, Northwestern Polytechnical University)

  • Hao Sun

    (Department of Applied Mathematics, Northwestern Polytechnical University)

Abstract

The main purpose of this article is to introduce the weighted ENSC value for cooperative transferable utility games which takes into account players' selfishness about the payoff allocations. Similarly to Shapley's idea of a one-by-one formation of the grand coalition (Shapley, 1953), we first provide a procedural implementation of the weighted ENSC value depending on players' selfishness as well as their marginal contributions to the grand coalition. Second, in the spirit of the nucleolus (Schmeidler, 1969), we prove that the weighted ENSC value is obtained by lexicographically minimizing a complaint vector associated with a new complaint criterion relying on players' selfishness.

Suggested Citation

  • Dongshuang Hou & Aymeric Lardon & Panfei Sun & Hao Sun, 2018. "Procedural and Optimization Implementation of the Weighted ENSC Value," GREDEG Working Papers 2018-20, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
  • Handle: RePEc:gre:wpaper:2018-20
    as

    Download full text from publisher

    File URL: http://195.220.190.85/GREDEG-WP-2018-20.pdf
    File Function: First version, 2018
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moulin, Herve, 1985. "The separability axiom and equal-sharing methods," Journal of Economic Theory, Elsevier, vol. 36(1), pages 120-148, June.
    2. Pierre Dehez & Daniela Tellone, 2013. "Data Games: Sharing Public Goods with Exclusion," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 15(4), pages 654-673, August.
    3. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    4. Felsenthal, Dan S & Machover, Moshe, 1996. "Alternative Forms of the Shapley Value and the Shapley-Shubik Index," Public Choice, Springer, vol. 87(3-4), pages 315-318, June.
    5. Forsythe Robert & Horowitz Joel L. & Savin N. E. & Sefton Martin, 1994. "Fairness in Simple Bargaining Experiments," Games and Economic Behavior, Elsevier, vol. 6(3), pages 347-369, May.
    6. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
    7. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    8. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Morton Davis & Michael Maschler, 1965. "The kernel of a cooperative game," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 12(3), pages 223-259, September.
    10. Sylvain Béal & Marc Deschamps & Philippe Solal, 2016. "Comparable Axiomatizations of Two Allocation Rules for Cooperative Games with Transferable Utility and Their Subclass of Data Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 18(6), pages 992-1004, December.
    11. Ruiz, Luis M & Valenciano, Federico & Zarzuelo, Jose M, 1996. "The Least Square Prenucleolus and the Least Square Nucleolus. Two Values for TU Games Based on the Excess Vector," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 113-134.
    12. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(1), pages 43-48.
    13. Marcin Malawski, 2013. "“Procedural” values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 305-324, February.
    14. Panfei Sun & Dongshuang Hou & Hao Sun & Theo Driessen, 2017. "Optimization Implementation and Characterization of the Equal Allocation of Nonseparable Costs Value," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 336-352, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengxing Zou & Rene van den Brink & Yukihiko Funaki, 2020. "Compromising between the proportional and equal division values: axiomatization, consistency and implementation," Tinbergen Institute Discussion Papers 20-054/II, Tinbergen Institute.
    2. Zhengxing Zou & Rene van den Brink, 2020. "Sharing the Surplus and Proportional Values," Tinbergen Institute Discussion Papers 20-014/II, Tinbergen Institute.
    3. Dongshuang Hou & Qianqian Kong & Xia Zhang & Hao Sun, 2021. "Adjacent Downstream Compensation Method of Sharing Polluted Rivers," Group Decision and Negotiation, Springer, vol. 30(1), pages 251-265, February.
    4. Zheng, Xiao-Xue & Li, Deng-Feng & Liu, Zhi & Jia, Fu & Lev, Benjamin, 2021. "Willingness-to-cede behaviour in sustainable supply chain coordination," International Journal of Production Economics, Elsevier, vol. 240(C).
    5. Zhengxing Zou & René Brink & Yukihiko Funaki, 2022. "Sharing the surplus and proportional values," Theory and Decision, Springer, vol. 93(1), pages 185-217, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Calvo Ramón & Esther Gutiérrez-López, 2022. "The equal collective gains value in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 249-278, March.
    2. Zhang, Li & Xu, Genjiu & Sun, Hao & Li, Wenzhong, 2023. "Players’ dummification and the dummified egalitarian non-separable contribution value," Economics Letters, Elsevier, vol. 226(C).
    3. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    4. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    5. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    6. Zheng, Xiao-Xue & Li, Deng-Feng & Liu, Zhi & Jia, Fu & Lev, Benjamin, 2021. "Willingness-to-cede behaviour in sustainable supply chain coordination," International Journal of Production Economics, Elsevier, vol. 240(C).
    7. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    8. Wenna Wang & Hao Sun & Rene (J.R.) van den Brink & Genjiu Xu, 2018. "The family of ideal values for cooperative games," Tinbergen Institute Discussion Papers 18-002/II, Tinbergen Institute.
    9. Wenna Wang & Hao Sun & René Brink & Genjiu Xu, 2019. "The Family of Ideal Values for Cooperative Games," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1065-1086, March.
    10. Dongshuang Hou & Aymeric Lardon & Panfei Sun & Theo Driessen, 2018. "Compromise for the per Capita Complaint: an optimization CharaCterization of two equalitarian values," Working Papers halshs-01931224, HAL.
    11. Pérez-Castrillo, David & Sun, Chaoran, 2021. "Value-free reductions," Games and Economic Behavior, Elsevier, vol. 130(C), pages 543-568.
    12. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    13. Takumi Kongo, 2024. "Equal support from others for unproductive players: efficient and linear values that satisfy the equal treatment and weak null player out properties for cooperative games," Annals of Operations Research, Springer, vol. 338(2), pages 973-989, July.
    14. Gutiérrez-López, Esther, 2020. "Axiomatic characterizations of the egalitarian solidarity values," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 109-115.
    15. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Working Papers 2020-01, CRESE.
    16. Panfei Sun & Dongshuang Hou & Hao Sun & Hui Zhang, 2017. "Process and optimization implementation of the $$\alpha $$ α -ENSC value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 293-308, October.
    17. Toru Hokari & Yukihiko Funaki & Peter Sudhölter, 2020. "Consistency, anonymity, and the core on the domain of convex games," Review of Economic Design, Springer;Society for Economic Design, vol. 24(3), pages 187-197, December.
    18. Casajus, André & Huettner, Frank, 2014. "Weakly monotonic solutions for cooperative games," Journal of Economic Theory, Elsevier, vol. 154(C), pages 162-172.
    19. Calleja, Pedro & Llerena, Francesc & Sudhölter, Peter, 2021. "Axiomatizations of Dutta-Ray’s egalitarian solution on the domain of convex games," Journal of Mathematical Economics, Elsevier, vol. 95(C).
    20. Rong Zou & Wenzhong Li & Marc Uetz & Genjiu Xu, 2023. "Two-step Shapley-solidarity value for cooperative games with coalition structure," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 1-25, March.

    More about this item

    Keywords

    TU-game; weighted ENSC value; allocation scenario; selissh complaint;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gre:wpaper:2018-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Patrice Bougette (email available below). General contact details of provider: https://edirc.repec.org/data/credcfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.