IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v44y2015i4p891-902.html
   My bibliography  Save this article

Axioms of invariance for TU-games

Author

Listed:
  • Sylvain Béal
  • Eric Rémila
  • Philippe Solal

Abstract

We introduce new axioms for the class of all TU-games with a fixed but arbitrary player set. These axioms require either invariance of an allocation rule or invariance of the payoff assigned by an allocation rule to a specified player in two related TU-games. Combinations of these new axioms are used to characterize the Shapley value, the Equal Division rule, and the Equal Surplus Division rule. The classical axioms of Efficiency, Anonymity, Equal treatment of equals, Additivity and Linearity are not used. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Axioms of invariance for TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 891-902, November.
  • Handle: RePEc:spr:jogath:v:44:y:2015:i:4:p:891-902
    DOI: 10.1007/s00182-014-0458-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00182-014-0458-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00182-014-0458-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kamiya, Kazuya & Talman, Dolf, 2009. "Matching models with a conservation law: The existence and global structure of the set of stationary equilibria," Journal of Mathematical Economics, Elsevier, vol. 45(5-6), pages 397-413, May.
    2. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    3. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    4. Haller, Hans, 1994. "Collusion Properties of Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 261-281.
    5. Futia, Carl A, 1982. "Invariant Distributions and the Limiting Behavior of Markovian Economic Models," Econometrica, Econometric Society, vol. 50(2), pages 377-408, March.
    6. Kemp, Gordon C. R., 2001. "Invariance and the Wald test," Journal of Econometrics, Elsevier, vol. 104(2), pages 209-217, September.
    7. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.
    8. Carl Futia, 2010. "Invariant Distributions and the Limiting Behavior of Markovian Economic Models," Levine's Working Paper Archive 497, David K. Levine.
    9. André Casajus, 2011. "Differential marginality, van den Brink fairness, and the Shapley value," Theory and Decision, Springer, vol. 71(2), pages 163-174, August.
    10. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    11. Gérard Hamiache, 2001. "Associated consistency and Shapley value," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 279-289.
    12. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    13. Samuelson, Paul A & Swamy, S, 1974. "Invariant Economic Index Numbers and Canonical Duality: Survey and Synthesis," American Economic Review, American Economic Association, vol. 64(4), pages 566-593, September.
    14. Willig, Robert D, 1977. "Risk Invariance and Ordinally Additive Utility Functions," Econometrica, Econometric Society, vol. 45(3), pages 621-640, April.
    15. Chameni Nembua, C., 2012. "Linear efficient and symmetric values for TU-games: Sharing the joint gain of cooperation," Games and Economic Behavior, Elsevier, vol. 74(1), pages 431-433.
    16. Theo Driessen, 2010. "Associated consistency and values for TU games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 467-482, July.
    17. Kenneth J. Arrow, 1950. "A Difficulty in the Concept of Social Welfare," Journal of Political Economy, University of Chicago Press, vol. 58(4), pages 328-328.
    18. Marcin Malawski, 2002. "Equal treatment, symmetry and Banzhaf value axiomatizations," International Journal of Game Theory, Springer;Game Theory Society, vol. 31(1), pages 47-67.
    19. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(1), pages 43-48.
    20. Ruiz, Luis M. & Valenciano, Federico & Zarzuelo, Jose M., 1998. "The Family of Least Square Values for Transferable Utility Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 109-130, July.
    21. Chun, Youngsub, 1989. "A new axiomatization of the shapley value," Games and Economic Behavior, Elsevier, vol. 1(2), pages 119-130, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2013. "A Decomposition of the Space of TU-games Using Addition and Transfer Invariance," Working Papers 2013-08, CRESE.
    3. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    4. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    5. Koji Yokote, 2015. "Weak addition invariance and axiomatization of the weighted Shapley value," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 275-293, May.
    6. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.
    7. Sylvain Ferrières, 2016. "Nullified equal loss property and equal division values," Working Papers 2016-06, CRESE.
    8. Casajus, André, 2014. "The Shapley value without efficiency and additivity," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 1-4.
    9. Pérez-Castrillo, David & Sun, Chaoran, 2021. "Value-free reductions," Games and Economic Behavior, Elsevier, vol. 130(C), pages 543-568.
    10. Macho-Stadler, Inés & Pérez-Castrillo, David & Wettstein, David, 2018. "Values for environments with externalities – The average approach," Games and Economic Behavior, Elsevier, vol. 108(C), pages 49-64.
    11. Sylvain Ferrières, 2017. "Nullified equal loss property and equal division values," Theory and Decision, Springer, vol. 83(3), pages 385-406, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Calvo Ramón & Esther Gutiérrez-López, 2022. "The equal collective gains value in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 249-278, March.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    3. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    4. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.
    5. Jun Su & Yuan Liang & Guangmin Wang & Genjiu Xu, 2020. "Characterizations, Potential, and an Implementation of the Shapley-Solidarity Value," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    6. Lee, Joosung & Driessen, Theo S.H., 2012. "Sequentially two-leveled egalitarianism for TU games: Characterization and application," European Journal of Operational Research, Elsevier, vol. 220(3), pages 736-743.
    7. Chameni Nembua, C. & Miamo Wendji, C., 2016. "Ordinal equivalence of values, Pigou–Dalton transfers and inequality in TU-games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 117-133.
    8. Casajus, André & Huettner, Frank, 2013. "Null players, solidarity, and the egalitarian Shapley values," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 58-61.
    9. Sylvain Béal & Eric Rémila & Philippe Solal, 2013. "A Decomposition of the Space of TU-games Using Addition and Transfer Invariance," Working Papers 2013-08, CRESE.
    10. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
    11. Wenzhong Li & Genjiu Xu & Rong Zou & Dongshuang Hou, 2022. "The allocation of marginal surplus for cooperative games with transferable utility," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 353-377, June.
    12. Nembua Célestin, Chameni & Wendji Clovis, Miamo, 2017. "On some decisive players for linear efficient and symmetric values in cooperative games with transferable utility," MPRA Paper 83670, University Library of Munich, Germany, revised 2017.
    13. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Working Papers 2020-01, CRESE.
    14. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Preserving or removing special players: What keeps your payoff unchanged in TU-games?," Mathematical Social Sciences, Elsevier, vol. 73(C), pages 23-31.
    15. Casajus, André & Huettner, Frank, 2014. "On a class of solidarity values," European Journal of Operational Research, Elsevier, vol. 236(2), pages 583-591.
    16. Casajus, André & Huettner, Frank, 2014. "Null, nullifying, or dummifying players: The difference between the Shapley value, the equal division value, and the equal surplus division value," Economics Letters, Elsevier, vol. 122(2), pages 167-169.
    17. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    18. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(2), pages 197-212, August.
    19. Takumi Kongo, 2018. "Effects of Players’ Nullification and Equal (Surplus) Division Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-14, March.
    20. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.

    More about this item

    Keywords

    Addition invariance; Equal (Surplus) Division rule; Transfer invariance; Shapley value;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:44:y:2015:i:4:p:891-902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.