IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01951010.html
   My bibliography  Save this paper

Coalitional desirability and the equal division value

Author

Listed:
  • Sylvain Béal

    (CRESE - Centre de REcherches sur les Stratégies Economiques (UR 3190) - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE])

  • Éric Rémila

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

  • Philippe Solal

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We introduce three natural collective variants of the well-known axiom of desirability (Maschler and Peleg in Pac J Math 18:289-328, 1966), which require that if the (per capita) contributions of a first coalition are at least as large as the (per capita) contributions of a second coalition, then the (average) payoff in the first coalition should be as large as the (average) payoff in the second coalition. These axioms are called coalitional desirability and average coalitional desirability. The third variant, called uniform coalitional desirability, applies only to coalitions with the same size. We show that coalitional desirability is very strong: no value satisfies simultaneously this axiom and efficiency. To the contrary, the combination of either average coalitional desirability or uniform coalitional desirability with efficiency and additivity characterizes the equal division value.

Suggested Citation

  • Sylvain Béal & Éric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Post-Print halshs-01951010, HAL.
  • Handle: RePEc:hal:journl:halshs-01951010
    DOI: 10.1007/s11238-018-9672-x
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Einy, Ezra & Neyman, Abraham, 1989. "Large symmetric games are characterized by completeness of the desirability relation," Journal of Economic Theory, Elsevier, vol. 48(2), pages 369-385, August.
    2. Sébastien Courtin & Bertrand Tchantcho, 2015. "A note on the ordinal equivalence of power indices in games with coalition structure," Theory and Decision, Springer, vol. 78(4), pages 617-628, April.
    3. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Axioms of invariance for TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 891-902, November.
    4. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Preserving or removing special players: What keeps your payoff unchanged in TU-games?," Mathematical Social Sciences, Elsevier, vol. 73(C), pages 23-31.
    5. Pierre Dehez & Daniela Tellone, 2013. "Data Games: Sharing Public Goods with Exclusion," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 15(4), pages 654-673, August.
    6. Sylvain Béal & André Casajus & Frank Huettner & Eric Rémila & Philippe Solal, 2016. "Characterizations of weighted and equal division values," Theory and Decision, Springer, vol. 80(4), pages 649-667, April.
    7. René Brink & Youngsub Chun & Yukihiko Funaki & Boram Park, 2016. "Consistency, population solidarity, and egalitarian solutions for TU-games," Theory and Decision, Springer, vol. 81(3), pages 427-447, September.
    8. Berghammer, Rudolf & Bolus, Stefan, 2012. "On the use of binary decision diagrams for solving problems on simple games," European Journal of Operational Research, Elsevier, vol. 222(3), pages 529-541.
    9. Sébastien Courtin & Bertrand Tchantcho, 2015. "A note on the ordinal equivalence of power indices in games with coalition structure," Post-Print hal-00914910, HAL.
    10. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    11. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.
    12. Tadeusz Radzik & Theo Driessen, 2016. "Modeling values for TU-games using generalized versions of consistency, standardness and the null player property," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(2), pages 179-205, April.
    13. Takumi Kongo, 2018. "Effects of Players’ Nullification and Equal (Surplus) Division Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-14, March.
    14. Béal, Sylvain & Casajus, André & Huettner, Frank & Rémila, Eric & Solal, Philippe, 2014. "Solidarity within a fixed community," Economics Letters, Elsevier, vol. 125(3), pages 440-443.
    15. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    16. Molinero, Xavier & Riquelme, Fabián & Serna, Maria, 2015. "Forms of representation for simple games: Sizes, conversions and equivalences," Mathematical Social Sciences, Elsevier, vol. 76(C), pages 87-102.
    17. Peleg, Bezalel, 1980. "A theory of coalition formation in committees," Journal of Mathematical Economics, Elsevier, vol. 7(2), pages 115-134, July.
    18. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    19. Casajus, André & Huettner, Frank, 2013. "Null players, solidarity, and the egalitarian Shapley values," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 58-61.
    20. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    21. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
    22. EINY, Ezra & LEHRER, Ehud, 1989. "Regular simple games," LIDAM Reprints CORE 850, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    23. Sylvain Béal & Marc Deschamps & Philippe Solal, 2016. "Comparable Axiomatizations of Two Allocation Rules for Cooperative Games with Transferable Utility and Their Subclass of Data Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 18(6), pages 992-1004, December.
    24. Aadland, David & Kolpin, Van, 1998. "Shared irrigation costs: An empirical and axiomatic analysis," Mathematical Social Sciences, Elsevier, vol. 35(2), pages 203-218, March.
    25. Carreras, Francesc & Freixas, Josep, 1996. "Complete simple games," Mathematical Social Sciences, Elsevier, vol. 32(2), pages 139-155, October.
    26. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    27. Einy, Ezra & Lehrer, Ehud, 1989. "Regular Simple Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 195-207.
    28. Marcin Malawski, 2013. "“Procedural” values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 305-324, February.
    29. Einy, Ezra, 1985. "The desirability relation of simple games," Mathematical Social Sciences, Elsevier, vol. 10(2), pages 155-168, October.
    30. Chameni Nembua, C. & Miamo Wendji, C., 2016. "Ordinal equivalence of values, Pigou–Dalton transfers and inequality in TU-games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 117-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lina Mallozzi & Juan Vidal-Puga, 2021. "Uncertainty in cooperative interval games: how Hurwicz criterion compatibility leads to egalitarianism," Annals of Operations Research, Springer, vol. 301(1), pages 143-159, June.
    2. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Post-Print hal-03252179, HAL.
    3. Hu, Xun-Feng, 2019. "Coalitional surplus desirability and the equal surplus division value," Economics Letters, Elsevier, vol. 179(C), pages 1-4.
    4. J. M. Alonso-Meijide & J. Costa & I. García-Jurado & J. C. Gonçalves-Dosantos, 2020. "On egalitarian values for cooperative games with a priori unions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 672-688, October.
    5. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvain Ferrières, 2017. "Nullified equal loss property and equal division values," Theory and Decision, Springer, vol. 83(3), pages 385-406, October.
    2. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    3. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(2), pages 197-212, August.
    4. Takumi Kongo, 2018. "Effects of Players’ Nullification and Equal (Surplus) Division Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-14, March.
    5. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    6. Emilio Calvo Ramón & Esther Gutiérrez-López, 2022. "The equal collective gains value in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 249-278, March.
    7. Surajit Borkotokey & Loyimee Gogoi & Dhrubajit Choudhury & Rajnish Kumar, 2022. "Solidarity induced by group contributions: the MI $$^k$$ k -value for transferable utility games," Operational Research, Springer, vol. 22(2), pages 1267-1290, April.
    8. Borkotokey, Surajit & Choudhury, Dhrubajit & Gogoi, Loyimee & Kumar, Rajnish, 2020. "Group contributions in TU-games: A class of k-lateral Shapley values," European Journal of Operational Research, Elsevier, vol. 286(2), pages 637-648.
    9. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    10. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Preserving or removing special players: What keeps your payoff unchanged in TU-games?," Mathematical Social Sciences, Elsevier, vol. 73(C), pages 23-31.
    11. Sylvain Ferrières, 2016. "Nullified equal loss property and equal division values," Working Papers 2016-06, CRESE.
    12. Sylvain Béal & André Casajus & Frank Huettner & Eric Rémila & Philippe Solal, 2016. "Characterizations of weighted and equal division values," Theory and Decision, Springer, vol. 80(4), pages 649-667, April.
    13. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    14. Li, Wenzhong & Xu, Genjiu & van den Brink, René, 2024. "Sign properties and axiomatizations of the weighted division values," Journal of Mathematical Economics, Elsevier, vol. 112(C).
    15. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2021. "Cohesive efficiency in TU-games: axiomatizations of variants of the Shapley value, egalitarian values and their convex combinations," Annals of Operations Research, Springer, vol. 302(1), pages 23-47, July.
    16. Zhengxing Zou & René Brink & Yukihiko Funaki, 2022. "Sharing the surplus and proportional values," Theory and Decision, Springer, vol. 93(1), pages 185-217, July.
    17. Zhengxing Zou & René Brink & Youngsub Chun & Yukihiko Funaki, 2021. "Axiomatizations of the proportional division value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 35-62, July.
    18. Zhengxing Zou & Rene van den Brink, 2020. "Sharing the Surplus and Proportional Values," Tinbergen Institute Discussion Papers 20-014/II, Tinbergen Institute.
    19. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2016. "Axiomatic characterizations under players nullification," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 47-57.
    20. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01951010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.