IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/83670.html
   My bibliography  Save this paper

On some decisive players for linear efficient and symmetric values in cooperative games with transferable utility

Author

Listed:
  • Nembua Célestin, Chameni
  • Wendji Clovis, Miamo

Abstract

The main goal of the paper is to shed light on economic allocations issues, in particular by focusing on individuals who receive nothing (that is an amount of zero allocation or payoff). It is worth noting that such individuals may be considered, in some contexts, as poor or socially excluded. To this end, our study relies on the notion of cooperative games with transferable utility and the Linear Efficient and Symmetric values (called LES values) are considered as allocation rules. Null players in Shapley sense are extensively studied ; two broader classes of null players are introduced. The analysis is facilitated by the help of a parametric representation of LES values. It is clearly shown that the control of what a LES value assigns as payoffs to null players gives significant information about the characterization of the value. Several axiomatic characterizations of subclasses of LES values are provided using our approach.

Suggested Citation

  • Nembua Célestin, Chameni & Wendji Clovis, Miamo, 2017. "On some decisive players for linear efficient and symmetric values in cooperative games with transferable utility," MPRA Paper 83670, University Library of Munich, Germany, revised 2017.
  • Handle: RePEc:pra:mprapa:83670
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/83670/1/MPRA_paper_83670.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    2. Célestin Chameni Nembua & Nicolas Gabriel Andjiga, 2008. "Linear, efficient and symmetric values for TU-games," Economics Bulletin, AccessEcon, vol. 3(71), pages 1-10.
    3. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    4. repec:ebl:ecbull:v:3:y:2008:i:71:p:1-10 is not listed on IDEAS
    5. repec:ebl:ecbull:v:3:y:2008:i:1:p:1-9 is not listed on IDEAS
    6. Francisco Sanchez-Sanchez & Ruben Juarez & Luis Hernandez-Lamoneda, 2008. "Solutions without dummy axiom for TU cooperative games," Economics Bulletin, AccessEcon, vol. 3(1), pages 1-9.
    7. Tadeusz Radzik & Theo Driessen, 2016. "Modeling values for TU-games using generalized versions of consistency, standardness and the null player property," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(2), pages 179-205, April.
    8. Chameni Nembua, C., 2012. "Linear efficient and symmetric values for TU-games: Sharing the joint gain of cooperation," Games and Economic Behavior, Elsevier, vol. 74(1), pages 431-433.
    9. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(1), pages 43-48.
    10. Ruiz, Luis M. & Valenciano, Federico & Zarzuelo, Jose M., 1998. "The Family of Least Square Values for Transferable Utility Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 109-130, July.
    11. Chameni Nembua, C. & Miamo Wendji, C., 2016. "Ordinal equivalence of values, Pigou–Dalton transfers and inequality in TU-games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 117-133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Calvo Ramón & Esther Gutiérrez-López, 2022. "The equal collective gains value in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 249-278, March.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    3. Lee, Joosung & Driessen, Theo S.H., 2012. "Sequentially two-leveled egalitarianism for TU games: Characterization and application," European Journal of Operational Research, Elsevier, vol. 220(3), pages 736-743.
    4. Chameni Nembua, C. & Miamo Wendji, C., 2016. "Ordinal equivalence of values, Pigou–Dalton transfers and inequality in TU-games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 117-133.
    5. Casajus, André & Huettner, Frank, 2013. "Null players, solidarity, and the egalitarian Shapley values," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 58-61.
    6. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    7. Chameni Nembua, C., 2012. "Linear efficient and symmetric values for TU-games: Sharing the joint gain of cooperation," Games and Economic Behavior, Elsevier, vol. 74(1), pages 431-433.
    8. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Axioms of invariance for TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 891-902, November.
    9. Chameni Nembua, Célestin & Demsou, Themoi, 2013. "Ordinal equivalence of values and Pigou-Dalton transfers in TU-games," MPRA Paper 44895, University Library of Munich, Germany, revised 09 Mar 2013.
    10. Maimo, Clovis Wendji, 2017. "Matrix representation of TU-games for Linear Efficient and Symmetric values," MPRA Paper 82416, University Library of Munich, Germany.
    11. Macho-Stadler, Inés & Pérez-Castrillo, David & Wettstein, David, 2018. "Values for environments with externalities – The average approach," Games and Economic Behavior, Elsevier, vol. 108(C), pages 49-64.
    12. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Working Papers 2020-01, CRESE.
    13. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    14. Sylvain Béal & Eric Rémila & Philippe Solal, 2013. "A Decomposition of the Space of TU-games Using Addition and Transfer Invariance," Working Papers 2013-08, CRESE.
    15. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
    16. Tadeusz Radzik, 2017. "On an extension of the concept of TU-games and their values," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 149-170, August.
    17. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Preserving or removing special players: What keeps your payoff unchanged in TU-games?," Mathematical Social Sciences, Elsevier, vol. 73(C), pages 23-31.
    18. Andrea Caggese & Ander Pérez-Orive, 2017. "Capital Misallocation and Secular Stagnation," Finance and Economics Discussion Series 2017-009, Board of Governors of the Federal Reserve System (U.S.).
    19. Radzik, Tadeusz & Driessen, Theo, 2013. "On a family of values for TU-games generalizing the Shapley value," Mathematical Social Sciences, Elsevier, vol. 65(2), pages 105-111.
    20. Dhrubajit Choudhury & Surajit Borkotokey & Rajnish Kumar & Sudipta Sarangi, 2021. "The Egalitarian Shapley value: a generalization based on coalition sizes," Annals of Operations Research, Springer, vol. 301(1), pages 55-63, June.

    More about this item

    Keywords

    TU-game; Linear Efficient and Symmetric value; Null players; Average null players; Shapley value; Solidarity value.;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:83670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.