IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v97y2023i3d10.1007_s00186-023-00814-3.html
   My bibliography  Save this article

The α-Egalitarian Myerson value of games with communication structure

Author

Listed:
  • Zijun Li

    (Central South University)

  • Fanyong Meng

    (Central South University)

Abstract

Some cooperative games may have some players whose marginal contribution is zero but are indispensable to forming the coalition. However, the marginalism-based index allocates such players with zero payoffs. It is unreasonable and inconsistent with practical cases because the rest players cannot cooperate to make more payoffs without the participation of the players with no marginal contribution. This paper studies one such type of cooperative game called games with communication structure and introduces the α-Egalitarian Myerson value. This payoff index consolidates the Myerson value and the Equal Component Division value, which not only considers the marginal contribution of players but also regards egalitarianism. The main feature of this payoff index is to protect all players’ payoffs. Three axiomatic systems are provided to show the rationality of the α-Egalitarian Myerson value. An application of the theoretical results in pharmaceutical supply chain management is offered to show the efficiency of the new payoff index.

Suggested Citation

  • Zijun Li & Fanyong Meng, 2023. "The α-Egalitarian Myerson value of games with communication structure," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 311-338, June.
  • Handle: RePEc:spr:mathme:v:97:y:2023:i:3:d:10.1007_s00186-023-00814-3
    DOI: 10.1007/s00186-023-00814-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-023-00814-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-023-00814-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winter, Eyal, 1992. "The consistency and potential for values of games with coalition structure," Games and Economic Behavior, Elsevier, vol. 4(1), pages 132-144, January.
    2. Wei-yu Kevin Chiang & Dilip Chhajed & James D. Hess, 2003. "Direct Marketing, Indirect Profits: A Strategic Analysis of Dual-Channel Supply-Chain Design," Management Science, INFORMS, vol. 49(1), pages 1-20, January.
    3. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
    4. Moulin, Herve, 1985. "The separability axiom and equal-sharing methods," Journal of Economic Theory, Elsevier, vol. 36(1), pages 120-148, June.
    5. Rong Zou & Genjiu Xu & Wenzhong Li & Xunfeng Hu, 2020. "A coalitional compromised solution for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(4), pages 735-758, December.
    6. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    7. Alonso-Meijide, J.M. & Álvarez-Mozos, M. & Fiestras-Janeiro, M.G., 2009. "Values of games with graph restricted communication and a priori unions," Mathematical Social Sciences, Elsevier, vol. 58(2), pages 202-213, September.
    8. Dhrubajit Choudhury & Surajit Borkotokey & Rajnish Kumar & Sudipta Sarangi, 2021. "The Egalitarian Shapley value: a generalization based on coalition sizes," Annals of Operations Research, Springer, vol. 301(1), pages 55-63, June.
    9. A. A. Tsay & W. S. Lovejoy, 1999. "Quantity Flexibility Contracts and Supply Chain Performance," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 89-111.
    10. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    11. Vazquez-Brage, Margarita & Garcia-Jurado, Ignacio & Carreras, Francesc, 1996. "The Owen Value Applied to Games with Graph-Restricted Communication," Games and Economic Behavior, Elsevier, vol. 12(1), pages 42-53, January.
    12. René Brink & Gerard Laan & Nigel Moes, 2015. "Values for transferable utility games with coalition and graph structure," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 77-99, April.
    13. Yoshio Kamijo & Takumi Kongo, 2010. "Axiomatization of the Shapley value using the balanced cycle contributions property," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(4), pages 563-571, October.
    14. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    15. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(1), pages 43-48.
    16. Casajus, André & Huettner, Frank, 2013. "Null players, solidarity, and the egalitarian Shapley values," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 58-61.
    17. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    18. Kurata, Hisashi & Yao, Dong-Qing & Liu, John J., 2007. "Pricing policies under direct vs. indirect channel competition and national vs. store brand competition," European Journal of Operational Research, Elsevier, vol. 180(1), pages 262-281, July.
    19. Huang, Wei & Swaminathan, Jayashankar M., 2009. "Introduction of a second channel: Implications for pricing and profits," European Journal of Operational Research, Elsevier, vol. 194(1), pages 258-279, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abe, Takaaki & Nakada, Satoshi, 2023. "The in-group egalitarian Owen values," Games and Economic Behavior, Elsevier, vol. 142(C), pages 1-16.
    2. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2024. "Weighted Myerson value for Network games," Papers 2402.11464, arXiv.org.
    3. Surajit Borkotokey & Sujata Goala & Niharika Kakoty & Parishmita Boruah, 2022. "The component-wise egalitarian Myerson value for Network Games," Papers 2201.02793, arXiv.org.
    4. Wenrong Lyu & Erfang Shan & Zeguang Cui, 2024. "Consistency of the Owen value for TU-games with coalition and graph structures," Annals of Operations Research, Springer, vol. 338(2), pages 991-1017, July.
    5. Jilei Shi & Lei Cai & Erfang Shan & Wenrong Lyu, 2022. "A value for cooperative games with coalition and probabilistic graph structures," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 646-671, April.
    6. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
    7. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    8. Yokote, Koji & Kongo, Takumi & Funaki, Yukihiko, 2018. "The balanced contributions property for equal contributors," Games and Economic Behavior, Elsevier, vol. 108(C), pages 113-124.
    9. Sylvain Béal & Sylvain Ferrières & Eric Rémila & Philippe Solal, 2017. "Axiomatic and bargaining foundation of an allocation rule for ordered tree TU-games," Post-Print halshs-01644797, HAL.
    10. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    11. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(2), pages 197-212, August.
    12. Jun Su & Yuan Liang & Guangmin Wang & Genjiu Xu, 2020. "Characterizations, Potential, and an Implementation of the Shapley-Solidarity Value," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    13. Sylvain Béal & Eric Rémila & Philippe Solal, 2022. "Allocation rules for cooperative games with restricted communication and a priori unions based on the Myerson value and the average tree solution," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 818-849, May.
    14. Calvo, Emilio & Lasaga, Javier & van den Nouweland, Anne, 1999. "Values of games with probabilistic graphs," Mathematical Social Sciences, Elsevier, vol. 37(1), pages 79-95, January.
    15. Erfang Shan, 2023. "Marginality and a Characterization of the Owen Graph value," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(2), pages 451-461, June.
    16. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    17. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "Axiomatization of an allocation rule for ordered tree TU-games," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 132-140.
    18. Surajit Borkotokey & Loyimee Gogoi & Dhrubajit Choudhury & Rajnish Kumar, 2022. "Solidarity induced by group contributions: the MI $$^k$$ k -value for transferable utility games," Operational Research, Springer, vol. 22(2), pages 1267-1290, April.
    19. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2021. "Cohesive efficiency in TU-games: axiomatizations of variants of the Shapley value, egalitarian values and their convex combinations," Annals of Operations Research, Springer, vol. 302(1), pages 23-47, July.
    20. Takumi Kongo, 2024. "Equal support from others for unproductive players: efficient and linear values that satisfy the equal treatment and weak null player out properties for cooperative games," Annals of Operations Research, Springer, vol. 338(2), pages 973-989, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:97:y:2023:i:3:d:10.1007_s00186-023-00814-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.