IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46436-z.html
   My bibliography  Save this article

Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging

Author

Listed:
  • Yue Jiang

    (School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University)

  • Min Zhao

    (School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University)

  • Jia Miao

    (School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University)

  • Wan Chen

    (School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University)

  • Yuan Zhang

    (School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University)

  • Minqian Miao

    (School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University)

  • Li Yang

    (School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University)

  • Qing Li

    (School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University)

  • Qingqing Miao

    (School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University
    University of Science and Technology of China)

Abstract

Activatable afterglow luminescence nanoprobes enabling switched “off-on” signals in response to biomarkers have recently emerged to achieve reduced unspecific signals and improved imaging fidelity. However, such nanoprobes always use a biomarker-interrupted energy transfer to obtain an activatable signal, which necessitates a strict distance requisition between a donor and an acceptor moiety (

Suggested Citation

  • Yue Jiang & Min Zhao & Jia Miao & Wan Chen & Yuan Zhang & Minqian Miao & Li Yang & Qing Li & Qingqing Miao, 2024. "Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46436-z
    DOI: 10.1038/s41467-024-46436-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46436-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46436-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yusuke Yoshioka & Nobuyoshi Kosaka & Yuki Konishi & Hideki Ohta & Hiroyuki Okamoto & Hikaru Sonoda & Ryoji Nonaka & Hirofumi Yamamoto & Hideshi Ishii & Masaki Mori & Koh Furuta & Takeshi Nakajima & Hi, 2014. "Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    2. Yongchao Liu & Lili Teng & Yifan Lyu & Guosheng Song & Xiao-Bing Zhang & Weihong Tan, 2022. "Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Peng Guo & Daxing Liu & Kriti Subramanyam & Biran Wang & Jiang Yang & Jing Huang & Debra T. Auguste & Marsha A. Moses, 2018. "Nanoparticle elasticity directs tumor uptake," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Ralph Weissleder & Mikael J. Pittet, 2008. "Imaging in the era of molecular oncology," Nature, Nature, vol. 452(7187), pages 580-589, April.
    5. Rimsha Bhatta & Joonsu Han & Yusheng Liu & Yang Bo & David Lee & Jiadiao Zhou & Yueji Wang & Erik Russell Nelson & Qian Chen & Xiaojia Shelly Zhang & Wael Hassaneen & Hua Wang, 2023. "Metabolic tagging of extracellular vesicles and development of enhanced extracellular vesicle based cancer vaccines," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Luyan Wu & Yusuke Ishigaki & Yuxuan Hu & Keisuke Sugimoto & Wenhui Zeng & Takashi Harimoto & Yidan Sun & Jian He & Takanori Suzuki & Xiqun Jiang & Hong-Yuan Chen & Deju Ye, 2020. "H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    7. Lingfei Lu & Benhao Li & Suwan Ding & Yong Fan & Shangfeng Wang & Caixia Sun & Mengyao Zhao & Chun-Xia Zhao & Fan Zhang, 2020. "NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongchao Liu & Lili Teng & Yifan Lyu & Guosheng Song & Xiao-Bing Zhang & Weihong Tan, 2022. "Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Sam J. Parkinson & Sireethorn Tungsirisurp & Chitra Joshi & Bethany L. Richmond & Miriam L. Gifford & Amrita Sikder & Iseult Lynch & Rachel K. O’Reilly & Richard M. Napier, 2022. "Polymer nanoparticles pass the plant interface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Luyan Wu & Yusuke Ishigaki & Wenhui Zeng & Takashi Harimoto & Baoli Yin & Yinghan Chen & Shiyi Liao & Yongchun Liu & Yidan Sun & Xiaobo Zhang & Ying Liu & Yong Liang & Pengfei Sun & Takanori Suzuki & , 2021. "Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Qian Zhang & Bin Song & Yanan Xu & Yunmin Yang & Jian Ji & Wenjun Cao & Jianping Lu & Jiali Ding & Haiting Cao & Binbin Chu & Jiaxu Hong & Houyu Wang & Yao He, 2023. "In vivo bioluminescence imaging of natural bacteria within deep tissues via ATP-binding cassette sugar transporter," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Mingyang Li & Xinyang Jin & Tao Liu & Feng Fan & Feng Gao & Shuang Chai & Lihua Yang, 2022. "Nanoparticle elasticity affects systemic circulation lifetime by modulating adsorption of apolipoprotein A-I in corona formation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Zheng Li & Yabo Zhu & Haowen Zeng & Chong Wang & Chen Xu & Qiang Wang & Huimin Wang & Shiyou Li & Jitang Chen & Chen Xiao & Xiangliang Yang & Zifu Li, 2023. "Mechano-boosting nanomedicine antitumour efficacy by blocking the reticuloendothelial system with stiff nanogels," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Danni Zhong & Weiyu Chen & Zhiming Xia & Rong Hu & Yuchen Qi & Bo Zhou & Wanlin Li & Jian He & Zhiming Wang & Zujin Zhao & Dan Ding & Mei Tian & Ben Zhong Tang & Min Zhou, 2021. "Aggregation-induced emission luminogens for image-guided surgery in non-human primates," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Guang-Song Zheng & Cheng-Long Shen & Chun-Yao Niu & Qing Lou & Tian-Ci Jiang & Peng-Fei Li & Xiao-Jing Shi & Run-Wei Song & Yuan Deng & Chao-Fan Lv & Kai-Kai Liu & Jin-Hao Zang & Zhe Cheng & Lin Dong , 2024. "Photooxidation triggered ultralong afterglow in carbon nanodots," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Yuling Xu & Chonglu Li & Shuai Lu & Zhizheng Wang & Shuang Liu & Xiujun Yu & Xiaopeng Li & Yao Sun, 2022. "Construction of emissive ruthenium(II) metallacycle over 1000 nm wavelength for in vivo biomedical applications," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46436-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.