Tuning nanoparticle core composition drives orthogonal fluorescence amplification for enhanced tumour imaging
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-52029-7
Download full text from publisher
References listed on IDEAS
- Luyan Wu & Yusuke Ishigaki & Yuxuan Hu & Keisuke Sugimoto & Wenhui Zeng & Takashi Harimoto & Yidan Sun & Jian He & Takanori Suzuki & Xiqun Jiang & Hong-Yuan Chen & Deju Ye, 2020. "H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
- F. J. Voskuil & P. J. Steinkamp & T. Zhao & B. Vegt & M. Koller & J. J. Doff & Y. Jayalakshmi & J. P. Hartung & J. Gao & B. D. Sumer & M. J. H. Witjes & G. M. Dam, 2020. "Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
- Peiyuan Wang & Yong Fan & Lingfei Lu & Lu Liu & Lingling Fan & Mengyao Zhao & Yang Xie & Congjian Xu & Fan Zhang, 2018. "NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
- Qingqing Yin & Anni Pan & Binlong Chen & Zenghui Wang & Mingmei Tang & Yue Yan & Yaoqi Wang & Heming Xia & Wei Chen & Hongliang Du & Meifang Chen & Chuanxun Fu & Yanni Wang & Xia Yuan & Zhihao Lu & Qi, 2021. "Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Han Ren & Xiang-Zhong Zeng & Xiao-Xiao Zhao & Da-yong Hou & Haodong Yao & Muhammad Yaseen & Lina Zhao & Wan-hai Xu & Hao Wang & Li-Li Li, 2022. "A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Mingmei Tang & Binlong Chen & Heming Xia & Meijie Pan & Ruiyang Zhao & Jiayi Zhou & Qingqing Yin & Fangjie Wan & Yue Yan & Chuanxun Fu & Lijun Zhong & Qiang Zhang & Yiguang Wang, 2023. "pH-gated nanoparticles selectively regulate lysosomal function of tumour-associated macrophages for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Luyan Wu & Yusuke Ishigaki & Wenhui Zeng & Takashi Harimoto & Baoli Yin & Yinghan Chen & Shiyi Liao & Yongchun Liu & Yidan Sun & Xiaobo Zhang & Ying Liu & Yong Liang & Pengfei Sun & Takanori Suzuki & , 2021. "Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Danni Zhong & Weiyu Chen & Zhiming Xia & Rong Hu & Yuchen Qi & Bo Zhou & Wanlin Li & Jian He & Zhiming Wang & Zujin Zhao & Dan Ding & Mei Tian & Ben Zhong Tang & Min Zhou, 2021. "Aggregation-induced emission luminogens for image-guided surgery in non-human primates," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Qingyu Zong & Jun Li & Qing Xu & Ye Liu & Kewei Wang & Youyong Yuan, 2024. "Self-immolative poly(thiocarbamate) with localized H2S signal amplification for precise cancer imaging and therapy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Yongchao Liu & Lili Teng & Yifan Lyu & Guosheng Song & Xiao-Bing Zhang & Weihong Tan, 2022. "Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Yue Jiang & Min Zhao & Jia Miao & Wan Chen & Yuan Zhang & Minqian Miao & Li Yang & Qing Li & Qingqing Miao, 2024. "Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Rui Tian & Xin Feng & Long Wei & Daoguo Dai & Ying Ma & Haifeng Pan & Shengxiang Ge & Lang Bai & Chaomin Ke & Yanlin Liu & Lixin Lang & Shoujun Zhu & Haitao Sun & Yanbao Yu & Xiaoyuan Chen, 2022. "A genetic engineering strategy for editing near-infrared-II fluorophores," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Renye Yue & Zhe Li & Huiyi Liu & Youjuan Wang & Yuhang Li & Rui Yin & Baoli Yin & Haisheng Qian & Heemin Kang & Xiaobing Zhang & Guosheng Song, 2024. "Imaging-guided companion diagnostics in radiotherapy by monitoring APE1 activity with afterglow and MRI imaging," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52029-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.