IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37827-9.html
   My bibliography  Save this article

In vivo bioluminescence imaging of natural bacteria within deep tissues via ATP-binding cassette sugar transporter

Author

Listed:
  • Qian Zhang

    (Soochow University)

  • Bin Song

    (Soochow University)

  • Yanan Xu

    (Soochow University)

  • Yunmin Yang

    (Soochow University)

  • Jian Ji

    (Fudan University)

  • Wenjun Cao

    (Fudan University)

  • Jianping Lu

    (Soochow University)

  • Jiali Ding

    (Soochow University)

  • Haiting Cao

    (Soochow University)

  • Binbin Chu

    (Soochow University)

  • Jiaxu Hong

    (Fudan University)

  • Houyu Wang

    (Soochow University)

  • Yao He

    (Soochow University)

Abstract

Most existing bioluminescence imaging methods can only visualize the location of engineered bacteria in vivo, generally precluding the imaging of natural bacteria. Herein, we leverage bacteria-specific ATP-binding cassette sugar transporters to internalize luciferase and luciferin by hitchhiking them on the unique carbon source of bacteria. Typically, the synthesized bioluminescent probes are made of glucose polymer (GP), luciferase, Cy5 and ICG-modified silicon nanoparticles and their substrates are made of GP and D-luciferin-modified silicon nanoparticles. Compared with bacteria with mutations in transporters, which hardly internalize the probes in vitro (i.e., ~2% of uptake rate), various bacteria could robustly engulf the probes with a high uptake rate of around 50%. Notably, the developed strategy enables ex vivo bioluminescence imaging of human vitreous containing ten species of pathogens collected from patients with bacterial endophthalmitis. By using this platform, we further differentiate bacterial and non-bacterial nephritis and colitis in mice, while their chemiluminescent counterparts are unable to distinguish them.

Suggested Citation

  • Qian Zhang & Bin Song & Yanan Xu & Yunmin Yang & Jian Ji & Wenjun Cao & Jianping Lu & Jiali Ding & Haiting Cao & Binbin Chu & Jiaxu Hong & Houyu Wang & Yao He, 2023. "In vivo bioluminescence imaging of natural bacteria within deep tissues via ATP-binding cassette sugar transporter," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37827-9
    DOI: 10.1038/s41467-023-37827-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37827-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37827-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander D. Klose & Neal Paragas, 2018. "Automated quantification of bioluminescence images," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Yunjie Li & Xiaoxiao Hu & Ding Ding & Yuxiu Zou & Yiting Xu & Xuewei Wang & Yin Zhang & Long Chen & Zhuo Chen & Weihong Tan, 2017. "In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    3. Jiali Tang & Binbin Chu & Jinhua Wang & Bin Song & Yuanyuan Su & Houyu Wang & Yao He, 2019. "Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. Yunjie Li & Xiaoxiao Hu & Ding Ding & Yuxiu Zou & Yiting Xu & Xuewei Wang & Yin Zhang & Long Chen & Zhuo Chen & Weihong Tan, 2017. "Correction: Corrigendum: In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules," Nature Communications, Nature, vol. 8(1), pages 1-2, December.
    5. Rong Sun & Mingzhu Liu & Jianping Lu & Binbin Chu & Yunmin Yang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Eric D. Brown & Gerard D. Wright, 2016. "Antibacterial drug discovery in the resistance era," Nature, Nature, vol. 529(7586), pages 336-343, January.
    7. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Lingfei Lu & Benhao Li & Suwan Ding & Yong Fan & Shangfeng Wang & Caixia Sun & Mengyao Zhao & Chun-Xia Zhao & Fan Zhang, 2020. "NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    9. Aleksey Yevtodiyenko & Arkadiy Bazhin & Pavlo Khodakivskyi & Aurelien Godinat & Ghyslain Budin & Tamara Maric & Giorgio Pietramaggiori & Sandra S. Scherer & Marina Kunchulia & George Eppeldauer & Serg, 2021. "Portable bioluminescent platform for in vivo monitoring of biological processes in non-transgenic animals," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Liqin Xiong & Adam J. Shuhendler & Jianghong Rao, 2012. "Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Li & Yong Hu & Xingcai Zhang & Xiangyang Shi & Wolfgang J. Parak & Andrij Pich, 2024. "Transvascular transport of nanocarriers for tumor delivery," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jin Feng & Youle Zheng & Wanqing Ma & Defeng Weng & Dapeng Peng & Yindi Xu & Zhifang Wang & Xu Wang, 2024. "A synthetic antibiotic class with a deeply-optimized design for overcoming bacterial resistance," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Luyan Wu & Yusuke Ishigaki & Wenhui Zeng & Takashi Harimoto & Baoli Yin & Yinghan Chen & Shiyi Liao & Yongchun Liu & Yidan Sun & Xiaobo Zhang & Ying Liu & Yong Liang & Pengfei Sun & Takanori Suzuki & , 2021. "Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Kade D. Roberts & Yan Zhu & Mohammad A. K. Azad & Mei-Ling Han & Jiping Wang & Lynn Wang & Heidi H. Yu & Andrew S. Horne & Jo-Anne Pinson & David Rudd & Nicolas H. Voelcker & Nitin A. Patil & Jinxin Z, 2022. "A synthetic lipopeptide targeting top-priority multidrug-resistant Gram-negative pathogens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Elsa Hansen & Jason Karslake & Robert J Woods & Andrew F Read & Kevin B Wood, 2020. "Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.
    7. Takeshi Nakaya & Miyuki Yabe & Ellene H. Mashalidis & Toyotaka Sato & Kazuki Yamamoto & Yuta Hikiji & Akira Katsuyama & Motoko Shinohara & Yusuke Minato & Satoshi Takahashi & Motohiro Horiuchi & Shin-, 2022. "Synthesis of macrocyclic nucleoside antibacterials and their interactions with MraY," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
    9. Songlei Zhou & Yukun Huang & Yu Chen & Yipu Liu & Laozhi Xie & Yang You & Shiqiang Tong & Jianpei Xu & Gan Jiang & Qingxiang Song & Ni Mei & Fenfen Ma & Xiaoling Gao & Hongzhuan Chen & Jun Chen, 2023. "Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Ming Li & Chenxi Wang & Qiang Yu & Haoyi Chen & Yingying Ma & Li Wei & Mei X. Wu & Min Yao & Min Lu, 2024. "A wearable and stretchable dual-wavelength LED device for home care of chronic infected wounds," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Yuling Xu & Chonglu Li & Shuai Lu & Zhizheng Wang & Shuang Liu & Xiujun Yu & Xiaopeng Li & Yao Sun, 2022. "Construction of emissive ruthenium(II) metallacycle over 1000 nm wavelength for in vivo biomedical applications," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Ke-Fei Xu & Shun-Yu Wu & Zihao Wang & Yuxin Guo & Ya-Xuan Zhu & Chengcheng Li & Bai-Hui Shan & Xinping Zhang & Xiaoyang Liu & Fu-Gen Wu, 2024. "Hyperbaric oxygen enhances tumor penetration and accumulation of engineered bacteria for synergistic photothermal immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    13. Alberto Signoroni & Alessandro Ferrari & Stefano Lombardi & Mattia Savardi & Stefania Fontana & Karissa Culbreath, 2023. "Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Yongchao Liu & Lili Teng & Yifan Lyu & Guosheng Song & Xiao-Bing Zhang & Weihong Tan, 2022. "Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Yue Jiang & Min Zhao & Jia Miao & Wan Chen & Yuan Zhang & Minqian Miao & Li Yang & Qing Li & Qingqing Miao, 2024. "Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Zehui Wang & Anhua Wu & Wen Cheng & Yuhe Li & Dingxuan Li & Lai Wang & Xinfu Zhang & Yi Xiao, 2023. "Adoptive macrophage directed photodynamic therapy of multidrug-resistant bacterial infection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Imran Noorani & Jorge Rosa, 2023. "Breaking barriers for glioblastoma with a path to enhanced drug delivery," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    18. Chenyuan Wang & Yushan Xia & Runming Wang & Jingru Li & Chun-Lung Chan & Richard Yi-Tsun Kao & Patrick H. Toy & Pak-Leung Ho & Hongyan Li & Hongzhe Sun, 2023. "Metallo-sideromycin as a dual functional complex for combating antimicrobial resistance," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Zhaxylyk A. Kudyshev & Demid Sychev & Zachariah Martin & Omer Yesilyurt & Simeon I. Bogdanov & Xiaohui Xu & Pei-Gang Chen & Alexander V. Kildishev & Alexandra Boltasseva & Vladimir M. Shalaev, 2023. "Machine learning assisted quantum super-resolution microscopy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Jiekai Sun & Xu Wang & Ye Gao & Shuangyu Li & Ziwei Hu & Yan Huang & Baoqiang Fan & Xia Wang & Miao Liu & Chunhua Qiao & Wei Zhang & Yipeng Wang & Xingyue Ji, 2024. "H2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H2S for antibacterial sensitization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37827-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.