IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14307-y.html
   My bibliography  Save this article

H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo

Author

Listed:
  • Luyan Wu

    (Nanjing University)

  • Yusuke Ishigaki

    (Hokkaido University)

  • Yuxuan Hu

    (Nanjing University)

  • Keisuke Sugimoto

    (Hokkaido University)

  • Wenhui Zeng

    (Nanjing University)

  • Takashi Harimoto

    (Hokkaido University)

  • Yidan Sun

    (Nanjing University)

  • Jian He

    (The Affiliated Hospital of Nanjing University Medical School)

  • Takanori Suzuki

    (Hokkaido University)

  • Xiqun Jiang

    (Nanjing University)

  • Hong-Yuan Chen

    (Nanjing University)

  • Deju Ye

    (Nanjing University
    Nanjing University)

Abstract

Afterglow luminescent probes with high signal-to-background ratio show promise for in vivo imaging; however, such probes that can be selectively delivered into target sites and switch on afterglow luminescence remain limited. We optimize an organic electrochromic material and integrate it into near-infrared (NIR) photosensitizer (silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) and (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) containing nanoparticles, developing an H2S-activatable NIR afterglow probe (F12+-ANP). F12+-ANP displays a fast reaction rate (1563 ± 141 M−1 s−1) and large afterglow turn-on ratio (~122-fold) toward H2S, enabling high-sensitivity and -specificity measurement of H2S concentration in bloods from healthy persons, hepatic or colorectal cancer patients. We further construct a hepatic-tumor-targeting and H2S-activatable afterglow probe (F12+-ANP-Gal) for noninvasive, real-time imaging of tiny subcutaneous HepG2 tumors (

Suggested Citation

  • Luyan Wu & Yusuke Ishigaki & Yuxuan Hu & Keisuke Sugimoto & Wenhui Zeng & Takashi Harimoto & Yidan Sun & Jian He & Takanori Suzuki & Xiqun Jiang & Hong-Yuan Chen & Deju Ye, 2020. "H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14307-y
    DOI: 10.1038/s41467-020-14307-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14307-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14307-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meijie Pan & Ruiyang Zhao & Chuanxun Fu & Mingmei Tang & Jiayi Zhou & Bin Ma & Jianxiong Liu & Ye Yang & Binlong Chen & Qiang Zhang & Yiguang Wang, 2024. "Tuning nanoparticle core composition drives orthogonal fluorescence amplification for enhanced tumour imaging," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Yongchao Liu & Lili Teng & Yifan Lyu & Guosheng Song & Xiao-Bing Zhang & Weihong Tan, 2022. "Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yue Jiang & Min Zhao & Jia Miao & Wan Chen & Yuan Zhang & Minqian Miao & Li Yang & Qing Li & Qingqing Miao, 2024. "Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Luyan Wu & Yusuke Ishigaki & Wenhui Zeng & Takashi Harimoto & Baoli Yin & Yinghan Chen & Shiyi Liao & Yongchun Liu & Yidan Sun & Xiaobo Zhang & Ying Liu & Yong Liang & Pengfei Sun & Takanori Suzuki & , 2021. "Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Renye Yue & Zhe Li & Huiyi Liu & Youjuan Wang & Yuhang Li & Rui Yin & Baoli Yin & Haisheng Qian & Heemin Kang & Xiaobing Zhang & Guosheng Song, 2024. "Imaging-guided companion diagnostics in radiotherapy by monitoring APE1 activity with afterglow and MRI imaging," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    6. Qingyu Zong & Jun Li & Qing Xu & Ye Liu & Kewei Wang & Youyong Yuan, 2024. "Self-immolative poly(thiocarbamate) with localized H2S signal amplification for precise cancer imaging and therapy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14307-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.