IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55096-y.html
   My bibliography  Save this article

NIR-II-excited off-on-off fluorescent nanoprobes for sensitive molecular imaging in vivo

Author

Listed:
  • Yufu Tang

    (National University of Singapore)

  • Yuanyuan Li

    (9 Wenyuan Road)

  • Chunxu He

    (9 Wenyuan Road)

  • Zhen Wang

    (9 Wenyuan Road)

  • Wei Huang

    (9 Wenyuan Road)

  • Quli Fan

    (9 Wenyuan Road)

  • Bin Liu

    (National University of Singapore)

Abstract

Strong background interference signals from normal tissues have significantly compromised the sensitive fluorescence imaging of early disease tissues with exogenous probes in vivo, particularly for sensitive fluorescence imaging of early liver disease due to the liver’s significant uptake and accumulation of exogenous nanoprobes, coupled with high tissue autofluorescence and deep tissue depth. As a proof-of-concept study, we herein report a near-infrared-II (NIR-II, 1.0-1.7 μm) light-excited “off-on-off” NIR-II fluorescent probe (NDP). It has near-ideal zero initial probe fluorescence but can turn on its NIR-II fluorescence in liver cancer tissues and then turn off the fluorescence again upon migration from cancer to normal tissues to minimize background interference. Due to its low background, a blind study employing our probes could identify female mice with orthotopic liver tumors with 100% accuracy from mixed subjects of healthy and tumor mice, and implemented sensitive locating of early orthotopic liver tumors with sizes as small as 4 mm. Our NIR-II-excited “off-on-off” probe design concept not only provides a promising molecular design guideline for sensitive imaging of early liver cancer but also could be generalized for sensitive imaging of other early disease lesions.

Suggested Citation

  • Yufu Tang & Yuanyuan Li & Chunxu He & Zhen Wang & Wei Huang & Quli Fan & Bin Liu, 2025. "NIR-II-excited off-on-off fluorescent nanoprobes for sensitive molecular imaging in vivo," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55096-y
    DOI: 10.1038/s41467-024-55096-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55096-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55096-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dehui Hu & Tao Zhang & Shayu Li & Tianjun Yu & Xiaohui Zhang & Rui Hu & Jiao Feng & Shuangqing Wang & Tongling Liang & Jianming Chen & Lyubov N. Sobenina & Boris A. Trofimov & Yi Li & Jinshi Ma & Guoq, 2018. "Ultrasensitive reversible chromophore reaction of BODIPY functions as high ratio double turn on probe," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Luyan Wu & Yusuke Ishigaki & Yuxuan Hu & Keisuke Sugimoto & Wenhui Zeng & Takashi Harimoto & Yidan Sun & Jian He & Takanori Suzuki & Xiqun Jiang & Hong-Yuan Chen & Deju Ye, 2020. "H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Lingfei Lu & Benhao Li & Suwan Ding & Yong Fan & Shangfeng Wang & Caixia Sun & Mengyao Zhao & Chun-Xia Zhao & Fan Zhang, 2020. "NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Yuming Zhang & Wenxuan Zhao & Yuncong Chen & Hao Yuan & Hongbao Fang & Shankun Yao & Changli Zhang & Hongxia Xu & Nan Li & Zhipeng Liu & Zijian Guo & Qingshun Zhao & Yong Liang & Weijiang He, 2021. "Rational construction of a reversible arylazo-based NIR probe for cycling hypoxia imaging in vivo," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Xianchuang Zheng & Xin Wang & Hui Mao & Wei Wu & Baorui Liu & Xiqun Jiang, 2015. "Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo," Nature Communications, Nature, vol. 6(1), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Jiang & Min Zhao & Jia Miao & Wan Chen & Yuan Zhang & Minqian Miao & Li Yang & Qing Li & Qingqing Miao, 2024. "Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yongchao Liu & Lili Teng & Yifan Lyu & Guosheng Song & Xiao-Bing Zhang & Weihong Tan, 2022. "Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Wensheng Xu & Bowei Wang & Shuai Liu & Wangwang Fang & Qinglong Jia & Jiayi Liu & Changchang Bo & Xilong Yan & Yang Li & Ligong Chen, 2024. "Urea-formaldehyde resin room temperature phosphorescent material with ultra-long afterglow and adjustable phosphorescence performance," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Qingyu Zong & Jun Li & Qing Xu & Ye Liu & Kewei Wang & Youyong Yuan, 2024. "Self-immolative poly(thiocarbamate) with localized H2S signal amplification for precise cancer imaging and therapy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Lei Ge & Yikai Tang & Chongzhi Wang & Jian Chen & Hui Mao & Xiqun Jiang, 2024. "A light-activatable theranostic combination for ratiometric hypoxia imaging and oxygen-deprived drug activity enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Xing Xing & Luyan Wu & Yuchen Zhang & Jiahao Pan & Yusuke Ishigaki & Huaqing Xie & Takanori Suzuki & Deju Ye & Jianhua Zhang & Weihua Zhang & Zhenda Lu, 2024. "Femtomolar hydrogen sulfide detection via hybrid small-molecule nano-arrays," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Meijie Pan & Ruiyang Zhao & Chuanxun Fu & Mingmei Tang & Jiayi Zhou & Bin Ma & Jianxiong Liu & Ye Yang & Binlong Chen & Qiang Zhang & Yiguang Wang, 2024. "Tuning nanoparticle core composition drives orthogonal fluorescence amplification for enhanced tumour imaging," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Weiping Xu & Shujuan Yi & Jie Liu & Yuyan Jiang & Jiaguo Huang, 2025. "Nitrile-aminothiol bioorthogonal near-infrared fluorogenic probes for ultrasensitive in vivo imaging," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    9. Renye Yue & Zhe Li & Huiyi Liu & Youjuan Wang & Yuhang Li & Rui Yin & Baoli Yin & Haisheng Qian & Heemin Kang & Xiaobing Zhang & Guosheng Song, 2024. "Imaging-guided companion diagnostics in radiotherapy by monitoring APE1 activity with afterglow and MRI imaging," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    10. Xing Wang Liu & Weijun Zhao & Yue Wu & Zhengong Meng & Zikai He & Xin Qi & Yiran Ren & Zhen-Qiang Yu & Ben Zhong Tang, 2022. "Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Luyan Wu & Yusuke Ishigaki & Wenhui Zeng & Takashi Harimoto & Baoli Yin & Yinghan Chen & Shiyi Liao & Yongchun Liu & Yidan Sun & Xiaobo Zhang & Ying Liu & Yong Liang & Pengfei Sun & Takanori Suzuki & , 2021. "Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Qian Zhang & Bin Song & Yanan Xu & Yunmin Yang & Jian Ji & Wenjun Cao & Jianping Lu & Jiali Ding & Haiting Cao & Binbin Chu & Jiaxu Hong & Houyu Wang & Yao He, 2023. "In vivo bioluminescence imaging of natural bacteria within deep tissues via ATP-binding cassette sugar transporter," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Jianwen Song & He Wang & Xue Meng & Wen Li & Ji Qi, 2024. "A hypoxia-activated and microenvironment-remodeling nanoplatform for multifunctional imaging and potentiated immunotherapy of cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    14. Yuling Xu & Chonglu Li & Shuai Lu & Zhizheng Wang & Shuang Liu & Xiujun Yu & Xiaopeng Li & Yao Sun, 2022. "Construction of emissive ruthenium(II) metallacycle over 1000 nm wavelength for in vivo biomedical applications," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Dongsheng Tang & Minhui Cui & Bin Wang & Ganghao Liang & Hanchen Zhang & Haihua Xiao, 2024. "Nanoparticles destabilizing the cell membranes triggered by NIR light for cancer imaging and photo-immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55096-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.