IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44519-x.html
   My bibliography  Save this article

Ultrashort vertical-channel MoS2 transistor using a self-aligned contact

Author

Listed:
  • Liting Liu

    (School of Physics and Electronics, Hunan University)

  • Yang Chen

    (School of Physics and Electronics, Hunan University)

  • Long Chen

    (School of Physics and Electronics, Hunan University)

  • Biao Xie

    (School of Physics and Electronics, Hunan University)

  • Guoli Li

    (School of Physics and Electronics, Hunan University)

  • Lingan Kong

    (School of Physics and Electronics, Hunan University)

  • Quanyang Tao

    (School of Physics and Electronics, Hunan University)

  • Zhiwei Li

    (School of Physics and Electronics, Hunan University)

  • Xiaokun Yang

    (School of Physics and Electronics, Hunan University)

  • Zheyi Lu

    (School of Physics and Electronics, Hunan University)

  • Likuan Ma

    (School of Physics and Electronics, Hunan University)

  • Donglin Lu

    (School of Physics and Electronics, Hunan University)

  • Xiangdong Yang

    (Ningbo University of Technology)

  • Yuan Liu

    (School of Physics and Electronics, Hunan University)

Abstract

Two-dimensional (2D) semiconductors hold great promises for ultra-scaled transistors. In particular, the gate length of MoS2 transistor has been scaled to 1 nm and 0.3 nm using single wall carbon nanotube and graphene, respectively. However, simultaneously scaling the channel length of these short-gate transistor is still challenging, and could be largely attributed to the processing difficulties to precisely align source-drain contact with gate electrode. Here, we report a self-alignment process for realizing ultra-scaled 2D transistors. By mechanically folding a graphene/BN/MoS2 heterostructure, source-drain metals could be precisely aligned around the folded edge, and the channel length is only dictated by heterostructure thickness. Together, we could realize sub-1 nm gate length and sub-50 nm channel length for vertical MoS2 transistor simultaneously. The self-aligned device exhibits on-off ratio over 105 and on-state current of 250 μA/μm at 4 V bias, which is over 40 times higher compared to control sample without self-alignment process.

Suggested Citation

  • Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44519-x
    DOI: 10.1038/s41467-023-44519-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44519-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44519-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Liu & Jian Guo & Enbo Zhu & Lei Liao & Sung-Joon Lee & Mengning Ding & Imran Shakir & Vincent Gambin & Yu Huang & Xiangfeng Duan, 2018. "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions," Nature, Nature, vol. 557(7707), pages 696-700, May.
    2. Weisheng Li & Xiaoshu Gong & Zhihao Yu & Liang Ma & Wenjie Sun & Si Gao & Çağıl Köroğlu & Wenfeng Wang & Lei Liu & Taotao Li & Hongkai Ning & Dongxu Fan & Yifei Xu & Xuecou Tu & Tao Xu & Litao Sun & W, 2023. "Approaching the quantum limit in two-dimensional semiconductor contacts," Nature, Nature, vol. 613(7943), pages 274-279, January.
    3. Fan Wu & He Tian & Yang Shen & Zhan Hou & Jie Ren & Guangyang Gou & Yabin Sun & Yi Yang & Tian-Ling Ren, 2022. "Vertical MoS2 transistors with sub-1-nm gate lengths," Nature, Nature, vol. 603(7900), pages 259-264, March.
    4. Yan Wang & Jong Chan Kim & Ryan J. Wu & Jenny Martinez & Xiuju Song & Jieun Yang & Fang Zhao & Andre Mkhoyan & Hu Young Jeong & Manish Chhowalla, 2019. "Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors," Nature, Nature, vol. 568(7750), pages 70-74, April.
    5. Yuan Liu & Xidong Duan & Hyeon-Jin Shin & Seongjun Park & Yu Huang & Xiangfeng Duan, 2021. "Promises and prospects of two-dimensional transistors," Nature, Nature, vol. 591(7848), pages 43-53, March.
    6. Deji Akinwande & Cedric Huyghebaert & Ching-Hua Wang & Martha I. Serna & Stijn Goossens & Lain-Jong Li & H.-S. Philip Wong & Frank H. L. Koppens, 2019. "Graphene and two-dimensional materials for silicon technology," Nature, Nature, vol. 573(7775), pages 507-518, September.
    7. Lei Liao & Yung-Chen Lin & Mingqiang Bao & Rui Cheng & Jingwei Bai & Yuan Liu & Yongquan Qu & Kang L. Wang & Yu Huang & Xiangfeng Duan, 2010. "High-speed graphene transistors with a self-aligned nanowire gate," Nature, Nature, vol. 467(7313), pages 305-308, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Seunguk Song & Aram Yoon & Sora Jang & Jason Lynch & Jihoon Yang & Juwon Han & Myeonggi Choe & Young Ho Jin & Cindy Yueli Chen & Yeryun Cheon & Jinsung Kwak & Changwook Jeong & Hyeonsik Cheong & Deep , 2023. "Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Yaoqiang Zhou & Lei Tong & Zefeng Chen & Li Tao & Yue Pang & Jian-Bin Xu, 2023. "Contact-engineered reconfigurable two-dimensional Schottky junction field-effect transistor with low leakage currents," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Xin Gao & Liming Zheng & Fang Luo & Jun Qian & Jingyue Wang & Mingzhi Yan & Wendong Wang & Qinci Wu & Junchuan Tang & Yisen Cao & Congwei Tan & Jilin Tang & Mengjian Zhu & Yani Wang & Yanglizhi Li & L, 2022. "Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Xiangbin Cai & Zefei Wu & Xu Han & Yong Chen & Shuigang Xu & Jiangxiazi Lin & Tianyi Han & Pingge He & Xuemeng Feng & Liheng An & Run Shi & Jingwei Wang & Zhehan Ying & Yuan Cai & Mengyuan Hua & Junwe, 2022. "Bridging the gap between atomically thin semiconductors and metal leads," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Mengshi Yu & Congwei Tan & Yuling Yin & Junchuan Tang & Xiaoyin Gao & Hongtao Liu & Feng Ding & Hailin Peng, 2024. "Integrated 2D multi-fin field-effect transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Yue Hu & Jingwen Jiang & Peng Zhang & Zhuang Ma & Fuxin Guan & Da Li & Zhengfang Qian & Xiuwen Zhang & Pu Huang, 2023. "Prediction of nonlayered oxide monolayers as flexible high-κ dielectrics with negative Poisson’s ratios," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Jun Yu & Han Wang & Fuwei Zhuge & Zirui Chen & Man Hu & Xiang Xu & Yuhui He & Ying Ma & Xiangshui Miao & Tianyou Zhai, 2023. "Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Yikai Zheng & Harikrishnan Ravichandran & Thomas F. Schranghamer & Nicholas Trainor & Joan M. Redwing & Saptarshi Das, 2022. "Hardware implementation of Bayesian network based on two-dimensional memtransistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Josef Schätz & Navin Nayi & Jonas Weber & Christoph Metzke & Sebastian Lukas & Jürgen Walter & Tim Schaffus & Fabian Streb & Eros Reato & Agata Piacentini & Annika Grundmann & Holger Kalisch & Michael, 2024. "Button shear testing for adhesion measurements of 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Zheyi Lu & Yang Chen & Weiqi Dang & Lingan Kong & Quanyang Tao & Likuan Ma & Donglin Lu & Liting Liu & Wanying Li & Zhiwei Li & Xiao Liu & Yiliu Wang & Xidong Duan & Lei Liao & Yuan Liu, 2023. "Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Qingxuan Li & Siwei Wang & Zhenhai Li & Xuemeng Hu & Yongkai Liu & Jiajie Yu & Yafen Yang & Tianyu Wang & Jialin Meng & Qingqing Sun & David Wei Zhang & Lin Chen, 2024. "High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Chenxinyu Pan & Yuanbiao Tong & Haoliang Qian & Alexey V. Krasavin & Jialin Li & Jiajie Zhu & Yiyun Zhang & Bowen Cui & Zhiyong Li & Chenming Wu & Lufang Liu & Linjun Li & Xin Guo & Anatoly V. Zayats , 2024. "Large area single crystal gold of single nanometer thickness for nanophotonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Shuo Dong & Samuel Beaulieu & Malte Selig & Philipp Rosenzweig & Dominik Christiansen & Tommaso Pincelli & Maciej Dendzik & Jonas D. Ziegler & Julian Maklar & R. Patrick Xian & Alexander Neef & Avaise, 2023. "Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Jiabiao Chen & Zhaochao Liu & Xinyue Dong & Zhansheng Gao & Yuxuan Lin & Yuyu He & Yingnan Duan & Tonghuai Cheng & Zhengyang Zhou & Huixia Fu & Feng Luo & Jinxiong Wu, 2023. "Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44519-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.