IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47974-2.html
   My bibliography  Save this article

Integrated 2D multi-fin field-effect transistors

Author

Listed:
  • Mengshi Yu

    (Peking University)

  • Congwei Tan

    (Peking University)

  • Yuling Yin

    (Chinese Academy of Sciences
    Shenzhen University of Advanced Technology)

  • Junchuan Tang

    (Peking University)

  • Xiaoyin Gao

    (Peking University)

  • Hongtao Liu

    (Peking University)

  • Feng Ding

    (Chinese Academy of Sciences
    Shenzhen University of Advanced Technology)

  • Hailin Peng

    (Peking University)

Abstract

Vertical semiconducting fins integrated with high-κ oxide dielectrics have been at the centre of the key device architecture that has promoted advanced transistor scaling during the last decades. Single-fin channels based on two-dimensional (2D) semiconductors are expected to offer unique advantages in achieving sub-1 nm fin-width and atomically flat interfaces, resulting in superior performance and potentially high-density integration. However, multi-fin structures integrated with high-κ dielectrics are commonly required to achieve higher electrical performance and integration density. Here we report a ledge-guided epitaxy strategy for growing high-density, mono-oriented 2D Bi2O2Se fin arrays that can be used to fabricate integrated 2D multi-fin field-effect transistors. Aligned substrate steps enabled precise control of both nucleation sites and orientation of 2D fin arrays. Multi-channel 2D fin field-effect transistors based on epitaxially integrated 2D Bi2O2Se/Bi2SeO5 fin-oxide heterostructures were fabricated, exhibiting an on/off current ratio greater than 106, high on-state current, low off-state current, and high durability. 2D multi-fin channel arrays integrated with high-κ oxide dielectrics offer a strategy to improve the device performance and integration density in ultrascaled 2D electronics.

Suggested Citation

  • Mengshi Yu & Congwei Tan & Yuling Yin & Junchuan Tang & Xiaoyin Gao & Hongtao Liu & Feng Ding & Hailin Peng, 2024. "Integrated 2D multi-fin field-effect transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47974-2
    DOI: 10.1038/s41467-024-47974-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47974-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47974-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jichen Dong & Leining Zhang & Xinyue Dai & Feng Ding, 2020. "The epitaxy of 2D materials growth," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Jianfeng Jiang & Lin Xu & Chenguang Qiu & Lian-Mao Peng, 2023. "Ballistic two-dimensional InSe transistors," Nature, Nature, vol. 616(7957), pages 470-475, April.
    3. Ming-Yang Li & Sheng-Kai Su & H.-S. Philip Wong & Lain-Jong Li, 2019. "How 2D semiconductors could extend Moore’s law," Nature, Nature, vol. 567(7747), pages 169-170, March.
    4. Mao-Lin Chen & Xingdan Sun & Hang Liu & Hanwen Wang & Qianbing Zhu & Shasha Wang & Haifeng Du & Baojuan Dong & Jing Zhang & Yun Sun & Song Qiu & Thomas Alava & Song Liu & Dong-Ming Sun & Zheng Han, 2020. "A FinFET with one atomic layer channel," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    5. Lei Liu & Taotao Li & Liang Ma & Weisheng Li & Si Gao & Wenjie Sun & Ruikang Dong & Xilu Zou & Dongxu Fan & Liangwei Shao & Chenyi Gu & Ningxuan Dai & Zhihao Yu & Xiaoqing Chen & Xuecou Tu & Yuefeng N, 2022. "Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire," Nature, Nature, vol. 605(7908), pages 69-75, May.
    6. Yuan Liu & Xidong Duan & Hyeon-Jin Shin & Seongjun Park & Yu Huang & Xiangfeng Duan, 2021. "Promises and prospects of two-dimensional transistors," Nature, Nature, vol. 591(7848), pages 43-53, March.
    7. Deji Akinwande & Cedric Huyghebaert & Ching-Hua Wang & Martha I. Serna & Stijn Goossens & Lain-Jong Li & H.-S. Philip Wong & Frank H. L. Koppens, 2019. "Graphene and two-dimensional materials for silicon technology," Nature, Nature, vol. 573(7775), pages 507-518, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Chengjian He & Chuan Xu & Chen Chen & Jinmeng Tong & Tianya Zhou & Su Sun & Zhibo Liu & Hui-Ming Cheng & Wencai Ren, 2024. "Unusually high thermal conductivity in suspended monolayer MoSi2N4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Jiabiao Chen & Zhaochao Liu & Xinyue Dong & Zhansheng Gao & Yuxuan Lin & Yuyu He & Yingnan Duan & Tonghuai Cheng & Zhengyang Zhou & Huixia Fu & Feng Luo & Jinxiong Wu, 2023. "Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Xingchen Pang & Yang Wang & Yuyan Zhu & Zhenhan Zhang & Du Xiang & Xun Ge & Haoqi Wu & Yongbo Jiang & Zizheng Liu & Xiaoxian Liu & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Luying Song & Ying Zhao & Bingqian Xu & Ruofan Du & Hui Li & Wang Feng & Junbo Yang & Xiaohui Li & Zijia Liu & Xia Wen & Yanan Peng & Yuzhu Wang & Hang Sun & Ling Huang & Yulin Jiang & Yao Cai & Xue J, 2024. "Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Ning Xu & Li Shi & Xudong Pei & Weiyang Zhang & Jian Chen & Zheng Han & Paolo Samorì & Jinlan Wang & Peng Wang & Yi Shi & Songlin Li, 2023. "Oxidation kinetics and non-Marcusian charge transfer in dimensionally confined semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Kunpeng Si & Yifan Zhao & Peng Zhang & Xingguo Wang & Qianqian He & Juntian Wei & Bixuan Li & Yongxi Wang & Aiping Cao & Zhigao Hu & Peizhe Tang & Feng Ding & Yongji Gong, 2024. "Quasi-equilibrium growth of inch-scale single-crystal monolayer α-In2Se3 on fluor-phlogopite," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Xin Gao & Liming Zheng & Fang Luo & Jun Qian & Jingyue Wang & Mingzhi Yan & Wendong Wang & Qinci Wu & Junchuan Tang & Yisen Cao & Congwei Tan & Jilin Tang & Mengjian Zhu & Yani Wang & Yanglizhi Li & L, 2022. "Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Yikai Zheng & Harikrishnan Ravichandran & Thomas F. Schranghamer & Nicholas Trainor & Joan M. Redwing & Saptarshi Das, 2022. "Hardware implementation of Bayesian network based on two-dimensional memtransistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Josef Schätz & Navin Nayi & Jonas Weber & Christoph Metzke & Sebastian Lukas & Jürgen Walter & Tim Schaffus & Fabian Streb & Eros Reato & Agata Piacentini & Annika Grundmann & Holger Kalisch & Michael, 2024. "Button shear testing for adhesion measurements of 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Yanfei Zhao & Mukesh Tripathi & Kristiāns Čerņevičs & Ahmet Avsar & Hyun Goo Ji & Juan Francisco Gonzalez Marin & Cheol-Yeon Cheon & Zhenyu Wang & Oleg V. Yazyev & Andras Kis, 2023. "Electrical spectroscopy of defect states and their hybridization in monolayer MoS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Xinyu Chen & Shuaihua Lu & Qian Chen & Qionghua Zhou & Jinlan Wang, 2024. "From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Xiaokun Yang & Rui He & Zheyi Lu & Yang Chen & Liting Liu & Donglin Lu & Likuan Ma & Quanyang Tao & Lingan Kong & Zhaojing Xiao & Songlong Liu & Zhiwei Li & Shuimei Ding & Xiao Liu & Yunxin Li & Yiliu, 2024. "Large-scale sub-5-nm vertical transistors by van der Waals integration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    19. Shuo Dong & Samuel Beaulieu & Malte Selig & Philipp Rosenzweig & Dominik Christiansen & Tommaso Pincelli & Maciej Dendzik & Jonas D. Ziegler & Julian Maklar & R. Patrick Xian & Alexander Neef & Avaise, 2023. "Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Haihui Lan & Luyang Wang & Runze He & Shuyi Huang & Jinqiu Yu & Jinming Guo & Jingrui Luo & Yiling Li & Jinyang Zhang & Jiaxin Lin & Shunping Zhang & Mengqi Zeng & Lei Fu, 2023. "2D quasi-layered material with domino structure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47974-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.