IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v603y2022i7900d10.1038_s41586-021-04323-3.html
   My bibliography  Save this article

Vertical MoS2 transistors with sub-1-nm gate lengths

Author

Listed:
  • Fan Wu

    (Tsinghua University
    Tsinghua University)

  • He Tian

    (Tsinghua University
    Tsinghua University)

  • Yang Shen

    (Tsinghua University
    Tsinghua University)

  • Zhan Hou

    (Tsinghua University
    Tsinghua University)

  • Jie Ren

    (Tsinghua University
    Tsinghua University)

  • Guangyang Gou

    (Tsinghua University
    Tsinghua University)

  • Yabin Sun

    (East China Normal University)

  • Yi Yang

    (Tsinghua University
    Tsinghua University)

  • Tian-Ling Ren

    (Tsinghua University
    Tsinghua University)

Abstract

Ultra-scaled transistors are of interest in the development of next-generation electronic devices1–3. Although atomically thin molybdenum disulfide (MoS2) transistors have been reported4, the fabrication of devices with gate lengths below 1 nm has been challenging5. Here we demonstrate side-wall MoS2 transistors with an atomically thin channel and a physical gate length of sub-1 nm using the edge of a graphene layer as the gate electrode. The approach uses large-area graphene and MoS2 films grown by chemical vapour deposition for the fabrication of side-wall transistors on a 2-inch wafer. These devices have On/Off ratios up to 1.02 × 105 and subthreshold swing values down to 117 mV dec–1. Simulation results indicate that the MoS2 side-wall effective channel length approaches 0.34 nm in the On state and 4.54 nm in the Off state. This work can promote Moore’s law of the scaling down of transistors for next-generation electronics.

Suggested Citation

  • Fan Wu & He Tian & Yang Shen & Zhan Hou & Jie Ren & Guangyang Gou & Yabin Sun & Yi Yang & Tian-Ling Ren, 2022. "Vertical MoS2 transistors with sub-1-nm gate lengths," Nature, Nature, vol. 603(7900), pages 259-264, March.
  • Handle: RePEc:nat:nature:v:603:y:2022:i:7900:d:10.1038_s41586-021-04323-3
    DOI: 10.1038/s41586-021-04323-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04323-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04323-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Xia Liu & Berke Erbas & Ana Conde-Rubio & Norma Rivano & Zhenyu Wang & Jin Jiang & Siiri Bienz & Naresh Kumar & Thibault Sohier & Marcos Penedo & Mitali Banerjee & Georg Fantner & Renato Zenobi & Nico, 2024. "Deterministic grayscale nanotopography to engineer mobilities in strained MoS2 FETs," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Kai Xiao & Jing Wan & Hui Xie & Yuxuan Zhu & Tian Tian & Wei Zhang & Yingxin Chen & Jinshu Zhang & Lihui Zhou & Sheng Dai & Zihan Xu & Wenzhong Bao & Peng Zhou, 2024. "High performance Si-MoS2 heterogeneous embedded DRAM," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Qingxuan Li & Siwei Wang & Zhenhai Li & Xuemeng Hu & Yongkai Liu & Jiajie Yu & Yafen Yang & Tianyu Wang & Jialin Meng & Qingqing Sun & David Wei Zhang & Lin Chen, 2024. "High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Yijun Li & Jianshi Tang & Bin Gao & Jian Yao & Anjunyi Fan & Bonan Yan & Yuchao Yang & Yue Xi & Yuankun Li & Jiaming Li & Wen Sun & Yiwei Du & Zhengwu Liu & Qingtian Zhang & Song Qiu & Qingwen Li & He, 2023. "Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yaoqiang Zhou & Lei Tong & Zefeng Chen & Li Tao & Yue Pang & Jian-Bin Xu, 2023. "Contact-engineered reconfigurable two-dimensional Schottky junction field-effect transistor with low leakage currents," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Jonathan J. P. Peters & Tiarnan Mullarkey & Emma Hedley & Karin H. Müller & Alexandra Porter & Ali Mostaed & Lewys Jones, 2023. "Electron counting detectors in scanning transmission electron microscopy via hardware signal processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Shun Tian & Ke Zhou & Wanjian Yin & Yilun Liu, 2024. "Machine learning enables the discovery of 2D Invar and anti-Invar monolayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Guangdi Feng & Yifei Liu & Qiuxiang Zhu & Zhenyu Feng & Shengwen Luo & Cuijie Qin & Luqiu Chen & Yu Xu & Haonan Wang & Muhammad Zubair & Ke Qu & Chang Yang & Shenglan Hao & Fangyu Yue & Chungang Duan , 2024. "Giant tunnel electroresistance through a Van der Waals junction by external ferroelectric polarization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:603:y:2022:i:7900:d:10.1038_s41586-021-04323-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.