IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52150-7.html
   My bibliography  Save this article

Large-scale sub-5-nm vertical transistors by van der Waals integration

Author

Listed:
  • Xiaokun Yang

    (Hunan University)

  • Rui He

    (Hunan University
    Hunan University)

  • Zheyi Lu

    (Hunan University)

  • Yang Chen

    (Hunan University)

  • Liting Liu

    (Hunan University)

  • Donglin Lu

    (Hunan University)

  • Likuan Ma

    (Hunan University)

  • Quanyang Tao

    (Hunan University)

  • Lingan Kong

    (Hunan University)

  • Zhaojing Xiao

    (Hunan University)

  • Songlong Liu

    (Hunan University)

  • Zhiwei Li

    (Hunan University)

  • Shuimei Ding

    (Hunan University)

  • Xiao Liu

    (Hunan University)

  • Yunxin Li

    (Hunan University)

  • Yiliu Wang

    (Hunan University)

  • Lei Liao

    (Hunan University)

  • Yuan Liu

    (Hunan University)

Abstract

Vertical field effect transistor (VFET), in which the semiconductor is sandwiched between source/drain electrodes and the channel length is simply determined by the semiconductor thickness, has demonstrated promising potential for short channel devices. However, despite extensive efforts over the past decade, scalable methods to fabricate ultra-short channel VFETs remain challenging. Here, we demonstrate a layer-by-layer transfer process of large-scale indium gallium zinc oxide (IGZO) semiconductor arrays and metal electrodes, and realize large-scale VFETs with ultra-short channel length and high device performance. Within this process, the oxide semiconductor could be pre-deposited on a sacrificial wafer, and then physically released and sandwiched between metals, maintaining the intrinsic properties of ultra-scaled vertical channel. Based on this lamination process, we realize 2 inch-scale VFETs with channel length down to 4 nm, on-current over 800 A/cm2, and highest on-off ratio up to 2 × 105, which is over two orders of magnitude higher compared to control samples without laminating process. Our study not only represents the optimization of VFETs performance and scalability at the same time, but also offers a method of transfer large-scale oxide arrays, providing interesting implication for ultra-thin vertical devices.

Suggested Citation

  • Xiaokun Yang & Rui He & Zheyi Lu & Yang Chen & Liting Liu & Donglin Lu & Likuan Ma & Quanyang Tao & Lingan Kong & Zhaojing Xiao & Songlong Liu & Zhiwei Li & Shuimei Ding & Xiao Liu & Yunxin Li & Yiliu, 2024. "Large-scale sub-5-nm vertical transistors by van der Waals integration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52150-7
    DOI: 10.1038/s41467-024-52150-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52150-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52150-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donglin Lu & Yang Chen & Zheyi Lu & Likuan Ma & Quanyang Tao & Zhiwei Li & Lingan Kong & Liting Liu & Xiaokun Yang & Shuimei Ding & Xiao Liu & Yunxin Li & Ruixia Wu & Yiliu Wang & Yuanyuan Hu & Xidong, 2024. "Monolithic three-dimensional tier-by-tier integration via van der Waals lamination," Nature, Nature, vol. 630(8016), pages 340-345, June.
    2. Wei Cao & Huiming Bu & Maud Vinet & Min Cao & Shinichi Takagi & Sungwoo Hwang & Tahir Ghani & Kaustav Banerjee, 2023. "Publisher Correction: The future transistors," Nature, Nature, vol. 621(7979), pages 43-43, September.
    3. Yuan Liu & Jian Guo & Enbo Zhu & Lei Liao & Sung-Joon Lee & Mengning Ding & Imran Shakir & Vincent Gambin & Yu Huang & Xiangfeng Duan, 2018. "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions," Nature, Nature, vol. 557(7707), pages 696-700, May.
    4. Wei Cao & Huiming Bu & Maud Vinet & Min Cao & Shinichi Takagi & Sungwoo Hwang & Tahir Ghani & Kaustav Banerjee, 2023. "The future transistors," Nature, Nature, vol. 620(7974), pages 501-515, August.
    5. Yuan Liu & Xidong Duan & Hyeon-Jin Shin & Seongjun Park & Yu Huang & Xiangfeng Duan, 2021. "Promises and prospects of two-dimensional transistors," Nature, Nature, vol. 591(7848), pages 43-53, March.
    6. Ardavan Zandiatashbar & Gwan-Hyoung Lee & Sung Joo An & Sunwoo Lee & Nithin Mathew & Mauricio Terrones & Takuya Hayashi & Catalin R. Picu & James Hone & Nikhil Koratkar, 2014. "Effect of defects on the intrinsic strength and stiffness of graphene," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Arnab Pal & Zichun Chai & Junkai Jiang & Wei Cao & Mike Davies & Vivek De & Kaustav Banerjee, 2024. "An ultra energy-efficient hardware platform for neuromorphic computing enabled by 2D-TMD tunnel-FETs," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Xiaodong Zhang & Chenxi Huang & Zeyu Li & Jun Fu & Jiaran Tian & Zhuping Ouyang & Yuliang Yang & Xiang Shao & Yulei Han & Zhenhua Qiao & Hualing Zeng, 2024. "Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Yue Hu & Jingwen Jiang & Peng Zhang & Zhuang Ma & Fuxin Guan & Da Li & Zhengfang Qian & Xiuwen Zhang & Pu Huang, 2023. "Prediction of nonlayered oxide monolayers as flexible high-κ dielectrics with negative Poisson’s ratios," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Jun Yu & Han Wang & Fuwei Zhuge & Zirui Chen & Man Hu & Xiang Xu & Yuhui He & Ying Ma & Xiangshui Miao & Tianyou Zhai, 2023. "Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Seunguk Song & Aram Yoon & Sora Jang & Jason Lynch & Jihoon Yang & Juwon Han & Myeonggi Choe & Young Ho Jin & Cindy Yueli Chen & Yeryun Cheon & Jinsung Kwak & Changwook Jeong & Hyeonsik Cheong & Deep , 2023. "Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Baracani, Manuela & Favoino, Fabio & Fantucci, Stefano & Serra, Valentina & Perino, Marco & Introna, Marisandra & Limbach, Rene & Wondraczek, Lothar, 2023. "Experimental assessment of the energy performance of microfluidic glazing components: The first results of a monitoring campaign carried out in an outdoor test facility," Energy, Elsevier, vol. 280(C).
    11. Chengjian He & Chuan Xu & Chen Chen & Jinmeng Tong & Tianya Zhou & Su Sun & Zhibo Liu & Hui-Ming Cheng & Wencai Ren, 2024. "Unusually high thermal conductivity in suspended monolayer MoSi2N4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Xinyu Chen & Shuaihua Lu & Qian Chen & Qionghua Zhou & Jinlan Wang, 2024. "From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Zheyi Lu & Yang Chen & Weiqi Dang & Lingan Kong & Quanyang Tao & Likuan Ma & Donglin Lu & Liting Liu & Wanying Li & Zhiwei Li & Xiao Liu & Yiliu Wang & Xidong Duan & Lei Liao & Yuan Liu, 2023. "Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Chenxinyu Pan & Yuanbiao Tong & Haoliang Qian & Alexey V. Krasavin & Jialin Li & Jiajie Zhu & Yiyun Zhang & Bowen Cui & Zhiyong Li & Chenming Wu & Lufang Liu & Linjun Li & Xin Guo & Anatoly V. Zayats , 2024. "Large area single crystal gold of single nanometer thickness for nanophotonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Jiabiao Chen & Zhaochao Liu & Xinyue Dong & Zhansheng Gao & Yuxuan Lin & Yuyu He & Yingnan Duan & Tonghuai Cheng & Zhengyang Zhou & Huixia Fu & Feng Luo & Jinxiong Wu, 2023. "Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Alexey Falin & Haifeng Lv & Eli Janzen & James H. Edgar & Rui Zhang & Dong Qian & Hwo-Shuenn Sheu & Qiran Cai & Wei Gan & Xiaojun Wu & Elton J. G. Santos & Lu Hua Li, 2023. "Anomalous isotope effect on mechanical properties of single atomic layer Boron Nitride," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Koosha Nassiri Nazif & Alwin Daus & Jiho Hong & Nayeun Lee & Sam Vaziri & Aravindh Kumar & Frederick Nitta & Michelle E. Chen & Siavash Kananian & Raisul Islam & Kwan-Ho Kim & Jin-Hong Park & Ada S. Y, 2021. "High-specific-power flexible transition metal dichalcogenide solar cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Sangyong Park & Dongyoung Lee & Juncheol Kang & Hojin Choi & Jin-Hong Park, 2023. "Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52150-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.