IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42312-4.html
   My bibliography  Save this article

Prediction of nonlayered oxide monolayers as flexible high-κ dielectrics with negative Poisson’s ratios

Author

Listed:
  • Yue Hu

    (Shenzhen University)

  • Jingwen Jiang

    (Jiangmen Polytechnic)

  • Peng Zhang

    (Shenzhen University
    Shenzhen University)

  • Zhuang Ma

    (Shenzhen University)

  • Fuxin Guan

    (University of Hong Kong)

  • Da Li

    (Shenzhen University)

  • Zhengfang Qian

    (Shenzhen University
    Shenzhen University)

  • Xiuwen Zhang

    (Shenzhen University
    University of Colorado)

  • Pu Huang

    (Shenzhen University
    Shenzhen University)

Abstract

During the last two decades, two-dimensional (2D) materials have been the focus of condensed matter physics and material science due to their promising fundamental properties and (opto-)electronic applications. However, high-κ 2D dielectrics that can be integrated within 2D devices are often missing. Here, we propose nonlayered oxide monolayers with calculated exfoliation energy as low as 0.39 J/m2 stemming from the ionic feature of the metal oxide bonds. We predict 51 easily or potentially exfoliable oxide monolayers, including metals and insulators/semiconductors, with intriguing physical properties such as ultra-high κ values, negative Poisson’s ratios and large valley spin splitting. Among them, the most promising dielectric, GeO2, exhibits an auxetic effect, a κ value of 99, and forms type-I heterostructures with MoSe2 and HfSe2, with a band offset of ~1 eV. Our study opens the way for designing nonlayered 2D oxides, offering a platform for studying the rich physics in ultra-thin oxides and their potential applications in future information technologies.

Suggested Citation

  • Yue Hu & Jingwen Jiang & Peng Zhang & Zhuang Ma & Fuxin Guan & Da Li & Zhengfang Qian & Xiuwen Zhang & Pu Huang, 2023. "Prediction of nonlayered oxide monolayers as flexible high-κ dielectrics with negative Poisson’s ratios," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42312-4
    DOI: 10.1038/s41467-023-42312-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42312-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42312-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Liu & Xidong Duan & Hyeon-Jin Shin & Seongjun Park & Yu Huang & Xiangfeng Duan, 2021. "Promises and prospects of two-dimensional transistors," Nature, Nature, vol. 591(7848), pages 43-53, March.
    2. Yuan Liu & Jian Guo & Enbo Zhu & Lei Liao & Sung-Joon Lee & Mengning Ding & Imran Shakir & Vincent Gambin & Yu Huang & Xiangfeng Duan, 2018. "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions," Nature, Nature, vol. 557(7707), pages 696-700, May.
    3. Liping Yu & Qimin Yan & Adrienn Ruzsinszky, 2017. "Negative Poisson’s ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    4. Jin-Wu Jiang & Harold S. Park, 2014. "Negative poisson’s ratio in single-layer black phosphorus," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    5. Yu-Chuan Lin & Ram Krishna Ghosh & Rafik Addou & Ning Lu & Sarah M. Eichfeld & Hui Zhu & Ming-Yang Li & Xin Peng & Moon J. Kim & Lain-Jong Li & Robert M. Wallace & Suman Datta & Joshua A. Robinson, 2015. "Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodong Zhang & Chenxi Huang & Zeyu Li & Jun Fu & Jiaran Tian & Zhuping Ouyang & Yuliang Yang & Xiang Shao & Yulei Han & Zhenhua Qiao & Hualing Zeng, 2024. "Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xiaokun Yang & Rui He & Zheyi Lu & Yang Chen & Liting Liu & Donglin Lu & Likuan Ma & Quanyang Tao & Lingan Kong & Zhaojing Xiao & Songlong Liu & Zhiwei Li & Shuimei Ding & Xiao Liu & Yunxin Li & Yiliu, 2024. "Large-scale sub-5-nm vertical transistors by van der Waals integration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Jun Yu & Han Wang & Fuwei Zhuge & Zirui Chen & Man Hu & Xiang Xu & Yuhui He & Ying Ma & Xiangshui Miao & Tianyou Zhai, 2023. "Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Seunguk Song & Aram Yoon & Sora Jang & Jason Lynch & Jihoon Yang & Juwon Han & Myeonggi Choe & Young Ho Jin & Cindy Yueli Chen & Yeryun Cheon & Jinsung Kwak & Changwook Jeong & Hyeonsik Cheong & Deep , 2023. "Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Chengjian He & Chuan Xu & Chen Chen & Jinmeng Tong & Tianya Zhou & Su Sun & Zhibo Liu & Hui-Ming Cheng & Wencai Ren, 2024. "Unusually high thermal conductivity in suspended monolayer MoSi2N4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Yaoqiang Zhou & Lei Tong & Zefeng Chen & Li Tao & Yue Pang & Jian-Bin Xu, 2023. "Contact-engineered reconfigurable two-dimensional Schottky junction field-effect transistor with low leakage currents," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Hyeongwoo Lee & Sujeong Kim & Seonhye Eom & Gangseon Ji & Soo Ho Choi & Huitae Joo & Jinhyuk Bae & Ki Kang Kim & Vasily Kravtsov & Hyeong-Ryeol Park & Kyoung-Duck Park, 2024. "Quantum tunneling high-speed nano-excitonic modulator," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Gyuho Myeong & Wongil Shin & Kyunghwan Sung & Seungho Kim & Hongsik Lim & Boram Kim & Taehyeok Jin & Jihoon Park & Taehun Lee & Michael S. Fuhrer & Kenji Watanabe & Takashi Taniguchi & Fei Liu & Sungj, 2022. "Dirac-source diode with sub-unity ideality factor," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    13. Xinyu Chen & Shuaihua Lu & Qian Chen & Qionghua Zhou & Jinlan Wang, 2024. "From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Zheyi Lu & Yang Chen & Weiqi Dang & Lingan Kong & Quanyang Tao & Likuan Ma & Donglin Lu & Liting Liu & Wanying Li & Zhiwei Li & Xiao Liu & Yiliu Wang & Xidong Duan & Lei Liao & Yuan Liu, 2023. "Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Chenxinyu Pan & Yuanbiao Tong & Haoliang Qian & Alexey V. Krasavin & Jialin Li & Jiajie Zhu & Yiyun Zhang & Bowen Cui & Zhiyong Li & Chenming Wu & Lufang Liu & Linjun Li & Xin Guo & Anatoly V. Zayats , 2024. "Large area single crystal gold of single nanometer thickness for nanophotonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Xin Gao & Liming Zheng & Fang Luo & Jun Qian & Jingyue Wang & Mingzhi Yan & Wendong Wang & Qinci Wu & Junchuan Tang & Yisen Cao & Congwei Tan & Jilin Tang & Mengjian Zhu & Yani Wang & Yanglizhi Li & L, 2022. "Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Senfeng Zeng & Chunsen Liu & Xiaohe Huang & Zhaowu Tang & Liwei Liu & Peng Zhou, 2022. "An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Yanghang Pan & Xinzhu Wang & Weiyang Zhang & Lingyu Tang & Zhangyan Mu & Cheng Liu & Bailin Tian & Muchun Fei & Yamei Sun & Huanhuan Su & Libo Gao & Peng Wang & Xiangfeng Duan & Jing Ma & Mengning Din, 2022. "Boosting the performance of single-atom catalysts via external electric field polarization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Jian Zhou & Chunchen Zhang & Li Shi & Xiaoqing Chen & Tae Soo Kim & Minseung Gyeon & Jian Chen & Jinlan Wang & Linwei Yu & Xinran Wang & Kibum Kang & Emanuele Orgiu & Paolo Samorì & Kenji Watanabe & T, 2022. "Non-invasive digital etching of van der Waals semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42312-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.