IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42312-4.html
   My bibliography  Save this article

Prediction of nonlayered oxide monolayers as flexible high-κ dielectrics with negative Poisson’s ratios

Author

Listed:
  • Yue Hu

    (Shenzhen University)

  • Jingwen Jiang

    (Jiangmen Polytechnic)

  • Peng Zhang

    (Shenzhen University
    Shenzhen University)

  • Zhuang Ma

    (Shenzhen University)

  • Fuxin Guan

    (University of Hong Kong)

  • Da Li

    (Shenzhen University)

  • Zhengfang Qian

    (Shenzhen University
    Shenzhen University)

  • Xiuwen Zhang

    (Shenzhen University
    University of Colorado)

  • Pu Huang

    (Shenzhen University
    Shenzhen University)

Abstract

During the last two decades, two-dimensional (2D) materials have been the focus of condensed matter physics and material science due to their promising fundamental properties and (opto-)electronic applications. However, high-κ 2D dielectrics that can be integrated within 2D devices are often missing. Here, we propose nonlayered oxide monolayers with calculated exfoliation energy as low as 0.39 J/m2 stemming from the ionic feature of the metal oxide bonds. We predict 51 easily or potentially exfoliable oxide monolayers, including metals and insulators/semiconductors, with intriguing physical properties such as ultra-high κ values, negative Poisson’s ratios and large valley spin splitting. Among them, the most promising dielectric, GeO2, exhibits an auxetic effect, a κ value of 99, and forms type-I heterostructures with MoSe2 and HfSe2, with a band offset of ~1 eV. Our study opens the way for designing nonlayered 2D oxides, offering a platform for studying the rich physics in ultra-thin oxides and their potential applications in future information technologies.

Suggested Citation

  • Yue Hu & Jingwen Jiang & Peng Zhang & Zhuang Ma & Fuxin Guan & Da Li & Zhengfang Qian & Xiuwen Zhang & Pu Huang, 2023. "Prediction of nonlayered oxide monolayers as flexible high-κ dielectrics with negative Poisson’s ratios," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42312-4
    DOI: 10.1038/s41467-023-42312-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42312-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42312-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Liu & Jian Guo & Enbo Zhu & Lei Liao & Sung-Joon Lee & Mengning Ding & Imran Shakir & Vincent Gambin & Yu Huang & Xiangfeng Duan, 2018. "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions," Nature, Nature, vol. 557(7707), pages 696-700, May.
    2. Liping Yu & Qimin Yan & Adrienn Ruzsinszky, 2017. "Negative Poisson’s ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    3. Yu-Chuan Lin & Ram Krishna Ghosh & Rafik Addou & Ning Lu & Sarah M. Eichfeld & Hui Zhu & Ming-Yang Li & Xin Peng & Moon J. Kim & Lain-Jong Li & Robert M. Wallace & Suman Datta & Joshua A. Robinson, 2015. "Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    4. Jin-Wu Jiang & Harold S. Park, 2014. "Negative poisson’s ratio in single-layer black phosphorus," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    5. Yuan Liu & Xidong Duan & Hyeon-Jin Shin & Seongjun Park & Yu Huang & Xiangfeng Duan, 2021. "Promises and prospects of two-dimensional transistors," Nature, Nature, vol. 591(7848), pages 43-53, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Jun Yu & Han Wang & Fuwei Zhuge & Zirui Chen & Man Hu & Xiang Xu & Yuhui He & Ying Ma & Xiangshui Miao & Tianyou Zhai, 2023. "Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Seunguk Song & Aram Yoon & Sora Jang & Jason Lynch & Jihoon Yang & Juwon Han & Myeonggi Choe & Young Ho Jin & Cindy Yueli Chen & Yeryun Cheon & Jinsung Kwak & Changwook Jeong & Hyeonsik Cheong & Deep , 2023. "Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Zheyi Lu & Yang Chen & Weiqi Dang & Lingan Kong & Quanyang Tao & Likuan Ma & Donglin Lu & Liting Liu & Wanying Li & Zhiwei Li & Xiao Liu & Yiliu Wang & Xidong Duan & Lei Liao & Yuan Liu, 2023. "Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Chenxinyu Pan & Yuanbiao Tong & Haoliang Qian & Alexey V. Krasavin & Jialin Li & Jiajie Zhu & Yiyun Zhang & Bowen Cui & Zhiyong Li & Chenming Wu & Lufang Liu & Linjun Li & Xin Guo & Anatoly V. Zayats , 2024. "Large area single crystal gold of single nanometer thickness for nanophotonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Jiabiao Chen & Zhaochao Liu & Xinyue Dong & Zhansheng Gao & Yuxuan Lin & Yuyu He & Yingnan Duan & Tonghuai Cheng & Zhengyang Zhou & Huixia Fu & Feng Luo & Jinxiong Wu, 2023. "Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Koosha Nassiri Nazif & Alwin Daus & Jiho Hong & Nayeun Lee & Sam Vaziri & Aravindh Kumar & Frederick Nitta & Michelle E. Chen & Siavash Kananian & Raisul Islam & Kwan-Ho Kim & Jin-Hong Park & Ada S. Y, 2021. "High-specific-power flexible transition metal dichalcogenide solar cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Sangyong Park & Dongyoung Lee & Juncheol Kang & Hojin Choi & Jin-Hong Park, 2023. "Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Ruiqing Cheng & Lei Yin & Yao Wen & Baoxing Zhai & Yuzheng Guo & Zhaofu Zhang & Weitu Liao & Wenqi Xiong & Hao Wang & Shengjun Yuan & Jian Jiang & Chuansheng Liu & Jun He, 2022. "Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Ning Xu & Li Shi & Xudong Pei & Weiyang Zhang & Jian Chen & Zheng Han & Paolo Samorì & Jinlan Wang & Peng Wang & Yi Shi & Songlin Li, 2023. "Oxidation kinetics and non-Marcusian charge transfer in dimensionally confined semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Seung-Il Kim & Ji-Yun Moon & Seok-Ki Hyeong & Soheil Ghods & Jin-Su Kim & Jun-Hui Choi & Dong Seop Park & Sukang Bae & Sung Ho Cho & Seoung-Ki Lee & Jae-Hyun Lee, 2024. "Float-stacked graphene–PMMA laminate," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Seunguk Song & Aram Yoon & Jong-Kwon Ha & Jihoon Yang & Sora Jang & Chloe Leblanc & Jaewon Wang & Yeoseon Sim & Deep Jariwala & Seung Kyu Min & Zonghoon Lee & Soon-Yong Kwon, 2022. "Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Yaoqiang Zhou & Lei Tong & Zefeng Chen & Li Tao & Yue Pang & Jian-Bin Xu, 2023. "Contact-engineered reconfigurable two-dimensional Schottky junction field-effect transistor with low leakage currents," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Gyuho Myeong & Wongil Shin & Kyunghwan Sung & Seungho Kim & Hongsik Lim & Boram Kim & Taehyeok Jin & Jihoon Park & Taehun Lee & Michael S. Fuhrer & Kenji Watanabe & Takashi Taniguchi & Fei Liu & Sungj, 2022. "Dirac-source diode with sub-unity ideality factor," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    20. Xin Gao & Liming Zheng & Fang Luo & Jun Qian & Jingyue Wang & Mingzhi Yan & Wendong Wang & Qinci Wu & Junchuan Tang & Yisen Cao & Congwei Tan & Jilin Tang & Mengjian Zhu & Yani Wang & Yanglizhi Li & L, 2022. "Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42312-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.