IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223021461.html
   My bibliography  Save this article

Thermodynamic performance of cascaded latent heat storage systems for building heating

Author

Listed:
  • Lu, Shilei
  • Lin, Quanyi
  • Xu, Bowen
  • Yue, Lu
  • Feng, Wei

Abstract

Decarbonization of building space heating is essential for China to meet its carbon neutrality goal by 2060. Cascaded latent heat storage (CLHS) coupled with electric heating is a promising technology to promote renewable energy consumption, reduce carbon emissions, and save on heating bills. However, few studies have focused on the thorough investigation of the superiority of the CLHS system over a non-cascaded system. This study investigated the effects of heat transfer fluid (HTF) flow rates, HTF inlet temperatures, and number of stages on the thermodynamic performance of non-cascaded and CLHS systems based on energy and entransy analysis. Results showed that, compared with the non-cascaded system, the charged thermal energy and discharged thermal energy of the two-stage CLHS system increased by 26.5%–44.6% and 19.8%–74.5%, respectively, and the entransy increase of cold HTF increased by 20.0%–75.7%; while, in heating systems, it is not guaranteed that thermodynamic performance improves by using more stages in the CLHS system.

Suggested Citation

  • Lu, Shilei & Lin, Quanyi & Xu, Bowen & Yue, Lu & Feng, Wei, 2023. "Thermodynamic performance of cascaded latent heat storage systems for building heating," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223021461
    DOI: 10.1016/j.energy.2023.128752
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223021461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    2. Zhao, Yanqi & Zou, Boyang & Zhang, Tongtong & Jiang, Zhu & Ding, Jianning & Ding, Yulong, 2022. "A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Zhang, Chunwei & Zhang, Xuejun & Qiu, Limin & Zhao, Yang, 2020. "Thermodynamic investigation of cascaded latent heat storage system based on a dynamic heat transfer model and DE algorithm," Energy, Elsevier, vol. 211(C).
    4. Fan, Man & Suo, Hanxiao & Yang, Hua & Zhang, Xuemei & Li, Xiaofei & Guo, Leihong & Kong, Xiangfei, 2022. "Experimental study on thermophysical parameters of a solar assisted cascaded latent heat thermal energy storage (CLHTES) system," Energy, Elsevier, vol. 256(C).
    5. Feng, Tong & Du, Huibin & Coffman, D'Maris & Qu, Aiyu & Dong, Zhanfeng, 2021. "Clean heating and heating poverty: A perspective based on cost-benefit analysis," Energy Policy, Elsevier, vol. 152(C).
    6. Xu, H.J. & Zhao, C.Y., 2016. "Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model," Renewable Energy, Elsevier, vol. 86(C), pages 228-237.
    7. Lu, Shilei & Lin, Quanyi & Liu, Yi & Yue, Lu & Wang, Ran, 2022. "Study on thermal performance improvement technology of latent heat thermal energy storage for building heating," Applied Energy, Elsevier, vol. 323(C).
    8. Prieto, Cristina & Cabeza, Luisa F., 2019. "Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance," Applied Energy, Elsevier, vol. 254(C).
    9. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    10. Xu, H.J. & Zhao, C.Y., 2019. "Analytical considerations on optimization of cascaded heat transfer process for thermal storage system with principles of thermodynamics," Renewable Energy, Elsevier, vol. 132(C), pages 826-845.
    11. Jianxiao Wang & Haiwang Zhong & Zhifang Yang & Mu Wang & Daniel M. Kammen & Zhu Liu & Ziming Ma & Qing Xia & Chongqing Kang, 2020. "Exploring the trade-offs between electric heating policy and carbon mitigation in China," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    12. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    13. Zhongyong Wang & Zhen Tong & Qinxian Ye & Hang Hu & Xiao Nie & Chen Yan & Wen Shang & Chengyi Song & Jianbo Wu & Jun Wang & Hua Bao & Peng Tao & Tao Deng, 2017. "Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    14. Zhao, Y. & You, Y. & Liu, H.B. & Zhao, C.Y. & Xu, Z.G., 2018. "Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process," Energy, Elsevier, vol. 157(C), pages 690-706.
    15. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    16. Xu, H.J. & Zhao, C.Y., 2015. "Thermodynamic analysis and optimization of cascaded latent heat storage system for energy efficient utilization," Energy, Elsevier, vol. 90(P2), pages 1662-1673.
    17. Huang, Yongping & Liu, Xiangdong, 2021. "Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins," Renewable Energy, Elsevier, vol. 174(C), pages 199-217.
    18. Xu, Bowen & Lu, Shilei & Wang, Ran & Zhai, Xue & Fan, Minchao & Jia, Wei & Du, Haibing, 2021. "Exergy analysis and optimization of charging–discharging processes for cascaded latent heat storage system," Energy, Elsevier, vol. 223(C).
    19. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2015. "Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 729-736.
    20. Rong Tang & Jing Zhao & Yifan Liu & Xin Huang & Yanxu Zhang & Derong Zhou & Aijun Ding & Chris P. Nielsen & Haikun Wang, 2022. "Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    21. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis of a cascaded cold storage unit using multiple PCMs," Energy, Elsevier, vol. 143(C), pages 448-457.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, H.J. & Zhao, C.Y., 2019. "Analytical considerations on optimization of cascaded heat transfer process for thermal storage system with principles of thermodynamics," Renewable Energy, Elsevier, vol. 132(C), pages 826-845.
    2. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
    3. Xu, Bowen & Lu, Shilei & Wang, Ran & Zhai, Xue & Fan, Minchao & Jia, Wei & Du, Haibing, 2021. "Exergy analysis and optimization of charging–discharging processes for cascaded latent heat storage system," Energy, Elsevier, vol. 223(C).
    4. Liu, Lu & Shao, Shuangquan, 2023. "Recent advances of low-temperature cascade phase change energy storage technology: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    5. Zhao, Y. & You, Y. & Liu, H.B. & Zhao, C.Y. & Xu, Z.G., 2018. "Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process," Energy, Elsevier, vol. 157(C), pages 690-706.
    6. Fan, Yubin & Zhang, Chunwei & Jiang, Long & Zhang, Xuejun & Qiu, Limin, 2022. "Exploration on two-stage latent thermal energy storage for heat recovery in cryogenic air separation purification system," Energy, Elsevier, vol. 239(PB).
    7. Liu, Y.K. & Tao, Y.B., 2018. "Thermodynamic analysis and optimization of multistage latent heat storage unit under unsteady inlet temperature based on entransy theory," Applied Energy, Elsevier, vol. 227(C), pages 488-496.
    8. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    9. Najafpour, Nategheh & Adibi, Omid, 2024. "Investigating the effects of nano-enhanced phase change material on melting performance of LHTES with novel perforated hybrid stair fins," Energy, Elsevier, vol. 290(C).
    10. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    11. Mao, Qianjun & Zhang, Yufei, 2023. "Effect of unsteady heat source condition on thermal performance for cascaded latent heat storage packed bed," Energy, Elsevier, vol. 284(C).
    12. Zhang, Chunwei & Zhang, Xuejun & Qiu, Limin & Zhao, Yang, 2020. "Thermodynamic investigation of cascaded latent heat storage system based on a dynamic heat transfer model and DE algorithm," Energy, Elsevier, vol. 211(C).
    13. Pu, Liang & Zhang, Shengqi & Xu, Lingling & Ma, Zhenjun & Wang, Xinke, 2021. "Numerical study on the performance of shell-and-tube thermal energy storage using multiple PCMs and gradient copper foam," Renewable Energy, Elsevier, vol. 174(C), pages 573-589.
    14. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    15. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    16. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    18. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    19. Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
    20. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223021461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.