A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2022.112134
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhou, Guobing & Yang, Yongping & Wang, Xin & Zhou, Shaoxiang, 2009. "Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation," Applied Energy, Elsevier, vol. 86(1), pages 52-59, January.
- Rodrigo Fuentes-Sepúlveda & Claudio García-Herrera & Diego A. Vasco & Carlos Salinas-Lira & Rubén A. Ananías, 2020. "Thermal Characterization of Pinus radiata Wood Vacuum-Impregnated with Octadecane," Energies, MDPI, vol. 13(4), pages 1-16, February.
- Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
- Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
- Yuan, Mengdi & Ren, Yunxiu & Xu, Chao & Ye, Feng & Du, Xiaoze, 2019. "Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 136(C), pages 211-222.
- Huang, Zhaowen & Gao, Xuenong & Xu, Tao & Fang, Yutang & Zhang, Zhengguo, 2014. "Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 115(C), pages 265-271.
- Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
- Lv, Peizhao & Liu, Chenzhen & Rao, Zhonghao, 2017. "Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 707-726.
- Yu, Qinghua & Jiang, Zhu & Cong, Lin & Lu, Tiejun & Suleiman, Bilyaminu & Leng, Guanghui & Wu, Zhentao & Ding, Yulong & Li, Yongliang, 2019. "A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 237(C), pages 367-377.
- Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
- Xu, Biwan & Ma, Hongyan & Lu, Zeyu & Li, Zongjin, 2015. "Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites," Applied Energy, Elsevier, vol. 160(C), pages 358-367.
- Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2018. "Cyclic performance of cascaded and multi-layered solid-PCM shell-and-tube thermal energy storage systems: A case study of the 19.9 MWe Gemasolar CSP plant," Applied Energy, Elsevier, vol. 228(C), pages 240-253.
- Zhang, Xiaoguang & Yin, Zhaoyu & Meng, Dezhi & Huang, Zhaohui & Wen, Ruilong & Huang, Yaoting & Min, Xin & Liu, Yangai & Fang, Minghao & Wu, Xiaowen, 2017. "Shape-stabilized composite phase change materials with high thermal conductivity based on stearic acid and modified expanded vermiculite," Renewable Energy, Elsevier, vol. 112(C), pages 113-123.
- Li, Min & Kao, Hongtao & Wu, Zhishen & Tan, Jinmiao, 2011. "Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials," Applied Energy, Elsevier, vol. 88(5), pages 1606-1612, May.
- Leng, Guanghui & Qiao, Geng & Jiang, Zhu & Xu, Guizhi & Qin, Yue & Chang, Chun & Ding, Yulong, 2018. "Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 217(C), pages 212-220.
- Zauner, Christoph & Windholz, Bernd & Lauermann, Michael & Drexler-Schmid, Gerwin & Leitgeb, Thomas, 2020. "Development of an Energy Efficient Extrusion Factory employing a latent heat storage and a high temperature heat pump," Applied Energy, Elsevier, vol. 259(C).
- Zou, Ting & Fu, Wanwan & Liang, Xianghui & Wang, Shuangfeng & Gao, Xuenong & Zhang, Zhengguo & Fang, Yutang, 2020. "Hydrophilic modification of expanded graphite to develop form-stable composite phase change material based on modified CaCl2·6H2O," Energy, Elsevier, vol. 190(C).
- Zhao, C.Y. & Zhang, G.H., 2011. "Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3813-3832.
- Yin, Huibin & Gao, Xuenong & Ding, Jing & Zhang, Zhengguo & Fang, Yutang, 2010. "Thermal management of electronic components with thermal adaptation composite material," Applied Energy, Elsevier, vol. 87(12), pages 3784-3791, December.
- Milián, Yanio E. & Gutiérrez, Andrea & Grágeda, Mario & Ushak, Svetlana, 2017. "A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 983-999.
- Kong, Xiangfei & Jie, Pengfei & Yao, Chengqiang & Liu, Yun, 2017. "Experimental study on thermal performance of phase change material passive and active combined using for building application in winter," Applied Energy, Elsevier, vol. 206(C), pages 293-302.
- Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
- Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Zhou, Guobing & Zhang, Yinping & Lin, Kunping & Xiao, Wei, 2008. "Thermal analysis of a direct-gain room with shape-stabilized PCM plates," Renewable Energy, Elsevier, vol. 33(6), pages 1228-1236.
- Fang, Guiyin & Li, Hui & Chen, Zhi & Liu, Xu, 2010. "Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials," Energy, Elsevier, vol. 35(12), pages 4622-4626.
- Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
- Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
- Li, W.Q. & Qu, Z.G. & Zhang, B.L. & Zhao, K. & Tao, W.Q., 2013. "Thermal behavior of porous stainless-steel fiber felt saturated with phase change material," Energy, Elsevier, vol. 55(C), pages 846-852.
- Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
- Feng, Daili & Feng, Yanhui & Qiu, Lin & Li, Pei & Zang, Yuyang & Zou, Hanying & Yu, Zepei & Zhang, Xinxin, 2019. "Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 578-605.
- Taylor, Peter G. & Bolton, Ronan & Stone, Dave & Upham, Paul, 2013. "Developing pathways for energy storage in the UK using a coevolutionary framework," Energy Policy, Elsevier, vol. 63(C), pages 230-243.
- Zhang, Yuang & Wang, Lingjuan & Tang, Bingtao & Lu, Rongwen & Zhang, Shufen, 2016. "Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure," Applied Energy, Elsevier, vol. 184(C), pages 241-246.
- Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
- Kendall Mongird & Vilayanur Viswanathan & Patrick Balducci & Jan Alam & Vanshika Fotedar & Vladimir Koritarov & Boualem Hadjerioua, 2020. "An Evaluation of Energy Storage Cost and Performance Characteristics," Energies, MDPI, vol. 13(13), pages 1-53, June.
- Liu, F. & Tait, S. & Schellart, A. & Mayfield, M. & Boxall, J., 2020. "Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
- Griffin, Paul W. & Hammond, Geoffrey P., 2019. "Industrial energy use and carbon emissions reduction in the iron and steel sector: A UK perspective," Applied Energy, Elsevier, vol. 249(C), pages 109-125.
- Jamekhorshid, A. & Sadrameli, S.M. & Farid, M., 2014. "A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 531-542.
- Jiang, Zhu & Navarro Rivero, Maria Elena & Liu, Xianglei & She, Xiaohui & Xuan, Yimin & Ding, Yulong, 2021. "A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method," Applied Energy, Elsevier, vol. 303(C).
- Mu, Mulan & Basheer, P.A.M. & Sha, Wei & Bai, Yun & McNally, Tony, 2016. "Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes," Applied Energy, Elsevier, vol. 162(C), pages 68-82.
- Li, Chuan & Li, Qi & Cong, Lin & jiang, Feng & Zhao, Yanqi & Liu, Chuanping & Xiong, Yaxuan & Chang, Chun & Ding, Yulong, 2019. "MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properti," Applied Energy, Elsevier, vol. 250(C), pages 81-91.
- Ling, Ziye & Zhang, Zhengguo & Shi, Guoquan & Fang, Xiaoming & Wang, Lei & Gao, Xuenong & Fang, Yutang & Xu, Tao & Wang, Shuangfeng & Liu, Xiaohong, 2014. "Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 427-438.
- Li, Chaoen & Yu, Hang & Song, Yuan & Zhao, Mei, 2018. "Synthesis and characterization of PEG/ZSM-5 composite phase change materials for latent heat storage," Renewable Energy, Elsevier, vol. 121(C), pages 45-52.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gao, Wei & Liu, Feifan & Yu, Cheng & Chen, Yongping & Liu, Xiangdong, 2023. "Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
- Nandy, Aditi & Houl, Yassine & Zhao, Weihuan & D'Souza, Nandika Anne, 2023. "Thermal heat transfer and energy modeling through incorporation of phase change materials (PCMs) into polyurethane foam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Zhao, Yanqi & Zou, Boyang & Zhang, Tongtong & Jiang, Zhu & Ding, Jianning & Ding, Yulong, 2022. "A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
- Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.
- Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
- Li, Zongtao & Wu, Yuxuan & Zhuang, Baoshan & Zhao, Xuezhi & Tang, Yong & Ding, Xinrui & Chen, Kaihang, 2017. "Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity," Applied Energy, Elsevier, vol. 206(C), pages 1147-1157.
- Jiang, Zhu & Navarro Rivero, Maria Elena & Liu, Xianglei & She, Xiaohui & Xuan, Yimin & Ding, Yulong, 2021. "A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method," Applied Energy, Elsevier, vol. 303(C).
- Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
- Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
- Hou, Yicheng & Qiu, Jun & Wang, Wei & He, Xibo & Ayyub, Mubashar & Shuai, Yong, 2022. "Preparation and performance improvement of chlorides/MgO ceramics shape-stabilized phase change materials with expanded graphite for thermal energy storage system," Applied Energy, Elsevier, vol. 316(C).
- Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
- Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
- Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
- Gao, Wei & Liu, Feifan & Yu, Cheng & Chen, Yongping & Liu, Xiangdong, 2023. "Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
- Grosu, Yaroslav & Zhao, Yanqi & Giacomello, Alberto & Meloni, Simone & Dauvergne, Jean-Luc & Nikulin, Artem & Palomo, Elena & Ding, Yulong & Faik, Abdessamad, 2020. "Hierarchical macro-nanoporous metals for leakage-free high-thermal conductivity shape-stabilized phase change materials," Applied Energy, Elsevier, vol. 269(C).
- Jiang, Feng & Ge, Zhiwei & Ling, Xiang & Cang, Daqiang & Zhang, Lingling & Ding, Yulong, 2021. "Improved thermophysical properties of shape-stabilized NaNO3 using a modified diatomite-based porous ceramic for solar thermal energy storage," Renewable Energy, Elsevier, vol. 179(C), pages 327-338.
- Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
- Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
More about this item
Keywords
Thermal energy storage (TES); Structurally stabilised composite phase change material (SSCPCM); Manufacturing technologies; Impregnation; Mix-sintering; Hot-melt extrusion; Manufacturing readiness level;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122000624. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.