IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2745-d1098297.html
   My bibliography  Save this article

Latent Heat Storage Systems for Thermal Management of Electric Vehicle Batteries: Thermal Performance Enhancement and Modulation of the Phase Transition Process Dynamics: A Literature Review

Author

Listed:
  • Bogdan Diaconu

    (Faculty of Engineering, Constantin Brâncuși University of Târgu-Jiu, 210185 Târgu Jiu, Romania)

  • Mihai Cruceru

    (Faculty of Engineering, Constantin Brâncuși University of Târgu-Jiu, 210185 Târgu Jiu, Romania)

  • Lucica Anghelescu

    (Faculty of Engineering, Constantin Brâncuși University of Târgu-Jiu, 210185 Târgu Jiu, Romania)

  • Cristinel Racoceanu

    (Faculty of Engineering, Constantin Brâncuși University of Târgu-Jiu, 210185 Târgu Jiu, Romania)

  • Cristinel Popescu

    (Faculty of Engineering, Constantin Brâncuși University of Târgu-Jiu, 210185 Târgu Jiu, Romania)

  • Marian Ionescu

    (Faculty of Engineering, Constantin Brâncuși University of Târgu-Jiu, 210185 Târgu Jiu, Romania)

  • Adriana Tudorache

    (Faculty of Engineering, Constantin Brâncuși University of Târgu-Jiu, 210185 Târgu Jiu, Romania)

Abstract

Electric vehicles battery systems (EVBS) are subject to complex charging/discharging processes that produce various amount of stress and cause significant temperature fluctuations. Due to the variable heat generation regimes, latent heat storage systems that can absorb significant amounts of thermal energy with little temperature variation are an interesting thermal management solution. A major drawback of organic phase change materials is their low thermal conductivity, which limits the material charging/discharging capacity. This review paper covers recent studies on thermal performance enhancement of PCM thermal management for electric vehicles batteries. A special focus is placed on the constraints related to electric vehicles battery systems, such as mass/volume minimization, integration with other battery thermal management systems, operational temperature range, adaptability to extreme regimes and modulation of the melting/solidification behavior. The main research outcomes are as follows: quantitative/comparative assessment of common enhancement technique in terms of performance; approaches to deal with special constraints related to EVBS from the thermal control point of view.

Suggested Citation

  • Bogdan Diaconu & Mihai Cruceru & Lucica Anghelescu & Cristinel Racoceanu & Cristinel Popescu & Marian Ionescu & Adriana Tudorache, 2023. "Latent Heat Storage Systems for Thermal Management of Electric Vehicle Batteries: Thermal Performance Enhancement and Modulation of the Phase Transition Process Dynamics: A Literature Review," Energies, MDPI, vol. 16(6), pages 1-46, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2745-:d:1098297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2745/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2745/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamidreza Behi & Danial Karimi & Rekabra Youssef & Mahesh Suresh Patil & Joeri Van Mierlo & Maitane Berecibar, 2021. "Comprehensive Passive Thermal Management Systems for Electric Vehicles," Energies, MDPI, vol. 14(13), pages 1-15, June.
    2. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Lv, Youfu & Yang, Xiaoqing & Li, Xinxi & Zhang, Guoqing & Wang, Ziyuan & Yang, Chengzhao, 2016. "Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins," Applied Energy, Elsevier, vol. 178(C), pages 376-382.
    4. Situ, Wenfu & Zhang, Guoqing & Li, Xinxi & Yang, Xiaoqing & Wei, Chao & Rao, Mumin & Wang, Ziyuan & Wang, Cong & Wu, Weixiong, 2017. "A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates," Energy, Elsevier, vol. 141(C), pages 613-623.
    5. Kittinan Boonma & Napol Patimaporntap & Hussein Mbulu & Piyatida Trinuruk & Kitchanon Ruangjirakit & Yossapong Laoonual & Somchai Wongwises, 2022. "A Review of the Parameters Affecting a Heat Pipe Thermal Management System for Lithium-Ion Batteries," Energies, MDPI, vol. 15(22), pages 1-16, November.
    6. Amjad, Shaik & Neelakrishnan, S. & Rudramoorthy, R., 2010. "Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1104-1110, April.
    7. Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).
    8. Mousavi, Sepehr & Zadehkabir, Amirhosein & Siavashi, Majid & Yang, Xiaohu, 2023. "An improved hybrid thermal management system for prismatic Li-ion batteries integrated with mini-channel and phase change materials," Applied Energy, Elsevier, vol. 334(C).
    9. Leng, Ziyu & Yuan, Yanping & Cao, Xiaoling & Zeng, Chao & Zhong, Wei & Gao, Bo, 2022. "Heat pipe/phase change material thermal management of Li-ion power battery packs: A numerical study on coupled heat transfer performance," Energy, Elsevier, vol. 240(C).
    10. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    11. Zhao, Yanqi & Zou, Boyang & Zhang, Tongtong & Jiang, Zhu & Ding, Jianning & Ding, Yulong, 2022. "A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Wu, Weixiong & Yang, Xiaoqing & Zhang, Guoqing & Ke, Xiufang & Wang, Ziyuan & Situ, Wenfu & Li, Xinxi & Zhang, Jiangyun, 2016. "An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack," Energy, Elsevier, vol. 113(C), pages 909-916.
    13. Asegun Henry & Ravi Prasher & Arun Majumdar, 2020. "Five thermal energy grand challenges for decarbonization," Nature Energy, Nature, vol. 5(9), pages 635-637, September.
    14. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    15. Ling, Ziye & Wen, Xiaoyan & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures," Energy, Elsevier, vol. 144(C), pages 977-983.
    16. Liu, Xun & Zhang, Chen-Feng & Zhou, Jian-Gang & Xiong, Xin & Wang, Yi-Ping, 2022. "Thermal performance of battery thermal management system using fins to enhance the combination of thermoelectric Cooler and phase change Material," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyle Shank & Saeed Tiari, 2023. "A Review on Active Heat Transfer Enhancement Techniques within Latent Heat Thermal Energy Storage Systems," Energies, MDPI, vol. 16(10), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    3. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    8. Xu, Xiaobin & Su, Yanghan & Kong, Jizhou & Chen, Xing & Wang, Xiaolin & Zhang, Hengyun & Zhou, Fei, 2024. "Performance analysis of thermal management systems for prismatic battery module with modularized liquid-cooling plate and PCM-negative Poisson's ratio structural laminboard," Energy, Elsevier, vol. 286(C).
    9. Qin, Siyu & Ji, Ruiyang & Miao, Chengyu & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2024. "Review of enhancing boiling and condensation heat transfer: Surface modification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    12. Kang, Zhuang & Peng, Qingguo & Yin, Ruixue & Yao, Zhengmin & Song, Yangyang & He, Biao, 2024. "Investigation of multifactorial effects on the thermal performance of battery pack inserted with multi-layer phase change materials," Energy, Elsevier, vol. 290(C).
    13. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. An, Zhiguo & Liu, Huaixi & Gao, Weilin & Zhang, Jianping, 2024. "A triple-hybrid battery thermal management system with drop-shaped fin channels for improving weather tolerance," Energy, Elsevier, vol. 307(C).
    15. Faizan, Md & Pati, Sukumar & Randive, Pitambar, 2023. "Effect of channel configurations on the thermal management of fast discharging Li-ion battery module with hybrid cooling," Energy, Elsevier, vol. 267(C).
    16. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    17. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    18. Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).
    19. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2745-:d:1098297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.