IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924010481.html
   My bibliography  Save this article

Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence

Author

Listed:
  • Zhou, Yuekuan

Abstract

As an indispensable component and intermediate bridge, electrochemical battery as an indispensable component is essential for power supply reliability, stability, grid-friendly interaction, sustainability with e-transportation and building electrification. However, the lifecycle carbon intensity of electrochemical batteries is uncertain throughout lifecycle battery-related activities. In this study, a generic methodology is proposed to accurately quantify the lifecycle carbon intensity of electrochemical batteries. A cross-scale multi-stage analytic platform with inter-disciplinary and trans-disciplinary is formulated, involving battery materials (anode, cathode, electrolyte), charging/discharging behaviours, cascade battery utilization, recycling, and reproduction. A case study on a zero-energy district in subtropical Guangzhou indicates that lifetime EV battery carbon intensity is +556 kg CO2,eq/kWh for the scenario with pure fossil fuel-based grid reliance, while the minimum carbon intensity of EVs at −860 kg CO2,eq/kWh can be achieved for the solar-wind supported scenario. The grid mandatory EVs charging will slightly increase the battery carbon intensity to −617.2 kg CO2,eq/kWh, and the exclusion of embodied carbon on both solar PV and wind turbines will increase the battery carbon intensity to −583.8 kg CO2,eq/kWh. The proposed approach and formulated platform can enable synthetical and comprehensive analysis on battery sustainability, throughout integrated cross-disciplinary approaches for 2060 carbon neutrality in China.

Suggested Citation

  • Zhou, Yuekuan, 2024. "Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010481
    DOI: 10.1016/j.apenergy.2024.123665
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924010481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.