IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v5y2020i9d10.1038_s41560-020-0668-8.html
   My bibliography  Save this article

Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis

Author

Listed:
  • A. J. Louli

    (Dalhousie University)

  • A. Eldesoky

    (Dalhousie University)

  • Rochelle Weber

    (Dalhousie University
    Tesla Canada R&D)

  • M. Genovese

    (Dalhousie University)

  • Matt Coon

    (Dalhousie University)

  • Jack deGooyer

    (Dalhousie University)

  • Zhe Deng

    (Hua Zhong University of Science and Technology)

  • R. T. White

    (Carl Zeiss Microscopy)

  • Jaehan Lee

    (Carl Zeiss Microscopy)

  • Thomas Rodgers

    (Carl Zeiss Microscopy)

  • R. Petibon

    (Tesla Canada R&D)

  • S. Hy

    (Tesla Canada R&D)

  • Shawn J. H. Cheng

    (Tesla Canada R&D)

  • J. R. Dahn

    (Dalhousie University
    Dalhousie University)

Abstract

Anode-free lithium metal cells store 60% more energy per volume than conventional lithium-ion cells. Such high energy density can increase the range of electric vehicles by approximately 280 km or even enable electrified urban aviation. However, these cells tend to experience rapid capacity loss and short cycle life. Furthermore, safety issues concerning metallic lithium often remain unaddressed in the literature. Recently, we demonstrated long-lifetime anode-free cells using a dual-salt carbonate electrolyte. Here we characterize the degradation of anode-free cells with this lean (2.6 g Ah−1) liquid electrolyte. We observe deterioration of the pristine lithium morphology using scanning electron microscopy and X-ray tomography, and diagnose the cause as electrolyte degradation and depletion using nuclear magnetic resonance spectroscopy and ultrasonic transmission mapping. For the safety characterization tests, we measure the cell temperature during nail penetration. Finally, we use the insights gained in this work to develop an optimized electrolyte, extending the lifetime of anode-free cells to 200 cycles.

Suggested Citation

  • A. J. Louli & A. Eldesoky & Rochelle Weber & M. Genovese & Matt Coon & Jack deGooyer & Zhe Deng & R. T. White & Jaehan Lee & Thomas Rodgers & R. Petibon & S. Hy & Shawn J. H. Cheng & J. R. Dahn, 2020. "Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis," Nature Energy, Nature, vol. 5(9), pages 693-702, September.
  • Handle: RePEc:nat:natene:v:5:y:2020:i:9:d:10.1038_s41560-020-0668-8
    DOI: 10.1038/s41560-020-0668-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-020-0668-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-020-0668-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Gu & En-Ming You & Jian-De Lin & Jun-Hao Wang & Si-Heng Luo & Ru-Yu Zhou & Chen-Jie Zhang & Jian-Lin Yao & Hui-Yang Li & Gen Li & Wei-Wei Wang & Yu Qiao & Jia-Wei Yan & De-Yin Wu & Guo-Kun Liu & Li, 2023. "Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Wang, Shibin & Qin, Yueping & Wang, Gang & Chen, Xuechang & Chi, Lihui & Yang, Liu, 2024. "Numerical simulation of ultrasonic P-wave propagation in water-bearing coal based on gas-liquid homogeneous wave velocity model," Energy, Elsevier, vol. 298(C).
    4. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Zhou, Yuekuan, 2024. "Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence," Applied Energy, Elsevier, vol. 371(C).
    6. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Hyeokjin Kwon & Hongsin Kim & Jaemin Hwang & Wonsik Oh & Youngil Roh & Dongseok Shin & Hee-Tak Kim, 2024. "Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion," Nature Energy, Nature, vol. 9(1), pages 57-69, January.
    9. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Junyeob Moon & Dong Ok Kim & Lieven Bekaert & Munsoo Song & Jinkyu Chung & Danwon Lee & Annick Hubin & Jongwoo Lim, 2022. "Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Burak Aktekin & Luise M. Riegger & Svenja-K. Otto & Till Fuchs & Anja Henss & Jürgen Janek, 2023. "SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:5:y:2020:i:9:d:10.1038_s41560-020-0668-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.