IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v192y2024ics1364032123010493.html
   My bibliography  Save this article

Challenges and opportunities for second-life batteries: Key technologies and economy

Author

Listed:
  • Gu, Xubo
  • Bai, Hanyu
  • Cui, Xiaofan
  • Zhu, Juner
  • Zhuang, Weichao
  • Li, Zhaojian
  • Hu, Xiaosong
  • Song, Ziyou

Abstract

Due to the increasing volume of electric vehicles in automotive markets and the limited lifetime of onboard lithium-ion batteries, the large-scale retirement of batteries is imminent. The battery packs retired from electric vehicles still own 70%–80% of the initial capacity, thus having the potential to be utilized in scenarios with lower energy and power requirements to maximize the value of batteries. However, spent batteries are commonly less reliable than fresh batteries due to their degraded performance, thereby necessitating a comprehensive assessment from safety and economic perspectives before further utilization. To this end, this paper reviews the key technological and economic aspects of second-life batteries (SLBs). Firstly, we introduce various degradation models for first-life batteries and identify an opportunity to combine physics-based theories with data-driven methods to establish explainable models with physical laws that can be generalized. However, degradation models specifically tailored to SLBs are currently absent. Therefore, we analyze the applicability of existing battery degradation models developed for first-life batteries in SLB applications. Secondly, we investigate a representative process of dealing with retired batteries and discuss the regrouping standards for cell-to-cell variation for the first time to guide the classification procedure and enhance the performance and safety of SLBs. Thirdly, we scrutinize the economic analysis of SLBs and summarize the potentially profitable applications. Finally, we comprehensively examine and compare power electronics technologies that can substantially improve the performance of SLBs, including high-efficiency energy transformation technologies, active equalization technologies, and technologies to improve reliability and safety.

Suggested Citation

  • Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010493
    DOI: 10.1016/j.rser.2023.114191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123010493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Applied Energy, Elsevier, vol. 300(C).
    2. Colarullo, Linda & Thakur, Jagruti, 2022. "Second-life EV batteries for stationary storage applications in Local Energy Communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Song, Ziyou & Li, Jianqiu & Han, Xuebing & Xu, Liangfei & Lu, Languang & Ouyang, Minggao & Hofmann, Heath, 2014. "Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 135(C), pages 212-224.
    4. Ng, Selina S.Y. & Xing, Yinjiao & Tsui, Kwok L., 2014. "A naive Bayes model for robust remaining useful life prediction of lithium-ion battery," Applied Energy, Elsevier, vol. 118(C), pages 114-123.
    5. Assunção, André & Moura, Pedro S. & de Almeida, Aníbal T., 2016. "Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy," Applied Energy, Elsevier, vol. 181(C), pages 120-131.
    6. Gur, K. & Chatzikyriakou, D. & Baschet, C. & Salomon, M., 2018. "The reuse of electrified vehicle batteries as a means of integrating renewable energy into the European electricity grid: A policy and market analysis," Energy Policy, Elsevier, vol. 113(C), pages 535-545.
    7. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    8. Kuo-Hsin Tseng & Jin-Wei Liang & Wunching Chang & Shyh-Chin Huang, 2015. "Regression Models Using Fully Discharged Voltage and Internal Resistance for State of Health Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 8(4), pages 1-19, April.
    9. Phuong-Ha La & Sung-Jin Choi, 2020. "Novel Dynamic Resistance Equalizer for Parallel-Connected Battery Configurations," Energies, MDPI, vol. 13(13), pages 1-17, June.
    10. Lingling Li & Pengchong Wang & Kuei-Hsiang Chao & Yatong Zhou & Yang Xie, 2016. "Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-13, September.
    11. Hsu, Chia-Wei & Xiong, Rui & Chen, Nan-Yow & Li, Ju & Tsou, Nien-Ti, 2022. "Deep neural network battery life and voltage prediction by using data of one cycle only," Applied Energy, Elsevier, vol. 306(PB).
    12. Mathews, Ian & Xu, Bolun & He, Wei & Barreto, Vanessa & Buonassisi, Tonio & Peters, Ian Marius, 2020. "Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging," Applied Energy, Elsevier, vol. 269(C).
    13. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Martinez-Laserna, E. & Gandiaga, I. & Sarasketa-Zabala, E. & Badeda, J. & Stroe, D.-I. & Swierczynski, M. & Goikoetxea, A., 2018. "Battery second life: Hype, hope or reality? A critical review of the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 701-718.
    15. Katharina Gruber & Tobias Gauster & Gregor Laaha & Peter Regner & Johannes Schmidt, 2022. "Profitability and investment risk of Texan power system winterization," Nature Energy, Nature, vol. 7(5), pages 409-416, May.
    16. Shuai Wang & Lingling Zhao & Xiaohong Su & Peijun Ma, 2014. "Prognostics of Lithium-Ion Batteries Based on Battery Performance Analysis and Flexible Support Vector Regression," Energies, MDPI, vol. 7(10), pages 1-17, October.
    17. Lukáš Janota & Tomáš Králík & Jaroslav Knápek, 2020. "Second Life Batteries Used in Energy Storage for Frequency Containment Reserve Service," Energies, MDPI, vol. 13(23), pages 1-36, December.
    18. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    19. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    20. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    21. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo, 2023. "Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    22. Antônio Rufino Júnior, Carlos & Sanseverino, Eleonora Riva & Gallo, Pierluigi & Koch, Daniel & Schweiger, Hans-Georg & Zanin, Hudson, 2022. "Blockchain review for battery supply chain monitoring and battery trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    23. Peter M. Attia & Aditya Grover & Norman Jin & Kristen A. Severson & Todor M. Markov & Yang-Hung Liao & Michael H. Chen & Bryan Cheong & Nicholas Perkins & Zi Yang & Patrick K. Herring & Muratahan Ayko, 2020. "Closed-loop optimization of fast-charging protocols for batteries with machine learning," Nature, Nature, vol. 578(7795), pages 397-402, February.
    24. Wu, Wei & Lin, Boqiang & Xie, Chunping & Elliott, Robert J.R. & Radcliffe, Jonathan, 2020. "Does energy storage provide a profitable second life for electric vehicle batteries?," Energy Economics, Elsevier, vol. 92(C).
    25. Li, Xiaoyu & Yuan, Changgui & Li, Xiaohui & Wang, Zhenpo, 2020. "State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression," Energy, Elsevier, vol. 190(C).
    26. Lander, Laura & Tagnon, Chris & Nguyen-Tien, Viet & Kendrick, Emma & Elliott, Robert J.R. & Abbott, Andrew P. & Edge, Jacqueline S. & Offer, Gregory J., 2023. "Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs," Applied Energy, Elsevier, vol. 331(C).
    27. Malhotra, Abhishek & Battke, Benedikt & Beuse, Martin & Stephan, Annegret & Schmidt, Tobias, 2016. "Use cases for stationary battery technologies: A review of the literature and existing projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 705-721.
    28. Michael Schimpe & Christian Piesch & Holger C. Hesse & Julian Paß & Stefan Ritter & Andreas Jossen, 2018. "Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System," Energies, MDPI, vol. 11(3), pages 1-17, March.
    29. Song, Ziyou & Yang, Niankai & Lin, Xinfan & Pinto Delgado, Fanny & Hofmann, Heath & Sun, Jing, 2022. "Progression of cell-to-cell variation within battery modules under different cooling structures," Applied Energy, Elsevier, vol. 312(C).
    30. Vykhodtsev, Anton V. & Jang, Darren & Wang, Qianpu & Rosehart, William & Zareipour, Hamidreza, 2022. "A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    31. Heymans, Catherine & Walker, Sean B. & Young, Steven B. & Fowler, Michael, 2014. "Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling," Energy Policy, Elsevier, vol. 71(C), pages 22-30.
    32. Lai, Xin & Huang, Yunfeng & Deng, Cong & Gu, Huanghui & Han, Xuebing & Zheng, Yuejiu & Ouyang, Minggao, 2021. "Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    33. Boris Stolz & Maximilian Held & Gil Georges & Konstantinos Boulouchos, 2022. "Techno-economic analysis of renewable fuels for ships carrying bulk cargo in Europe," Nature Energy, Nature, vol. 7(2), pages 203-212, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Hanyu & Lei, Shunbo & Geng, Sijia & Hu, Xiaosong & Li, Zhaojian & Song, Ziyou, 2024. "Techno-economic assessment of isolated micro-grids with second-life batteries: A reliability-oriented iterative design framework," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Hanyu & Lei, Shunbo & Geng, Sijia & Hu, Xiaosong & Li, Zhaojian & Song, Ziyou, 2024. "Techno-economic assessment of isolated micro-grids with second-life batteries: A reliability-oriented iterative design framework," Applied Energy, Elsevier, vol. 364(C).
    2. Al-Wreikat, Yazan & Attfield, Emily Kate & Sodré, José Ricardo, 2022. "Model for payback time of using retired electric vehicle batteries in residential energy storage systems," Energy, Elsevier, vol. 259(C).
    3. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    4. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Applied Energy, Elsevier, vol. 300(C).
    5. Horesh, Noah & Quinn, Casey & Wang, Hongjie & Zane, Regan & Ferry, Mike & Tong, Shijie & Quinn, Jason C., 2021. "Driving to the future of energy storage: Techno-economic analysis of a novel method to recondition second life electric vehicle batteries," Applied Energy, Elsevier, vol. 295(C).
    6. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Lai, Xin & Huang, Yunfeng & Deng, Cong & Gu, Huanghui & Han, Xuebing & Zheng, Yuejiu & Ouyang, Minggao, 2021. "Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).
    9. Aree Wangsupphaphol & Surachai Chaitusaney & Mohamed Salem, 2023. "A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    10. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Fujin Wang & Zhi Zhai & Zhibin Zhao & Yi Di & Xuefeng Chen, 2024. "Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
    13. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Institute of Transportation Studies, Working Paper Series qt2ws2c6jw, Institute of Transportation Studies, UC Davis.
    14. Hong Eun Moon & Yoon Hee Ha & Kyung Nam Kim, 2022. "Comparative Economic Analysis of Solar PV and Reused EV Batteries in the Residential Sector of Three Emerging Countries—The Philippines, Indonesia, and Vietnam," Energies, MDPI, vol. 16(1), pages 1-26, December.
    15. Shengyu Tao & Haizhou Liu & Chongbo Sun & Haocheng Ji & Guanjun Ji & Zhiyuan Han & Runhua Gao & Jun Ma & Ruifei Ma & Yuou Chen & Shiyi Fu & Yu Wang & Yaojie Sun & Yu Rong & Xuan Zhang & Guangmin Zhou , 2023. "Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Wu, Wei & Lin, Boqiang & Xie, Chunping & Elliott, Robert J.R. & Radcliffe, Jonathan, 2020. "Does energy storage provide a profitable second life for electric vehicle batteries?," Energy Economics, Elsevier, vol. 92(C).
    17. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    18. Chen, Zhang & Chen, Liqun & Ma, Zhengwei & Xu, Kangkang & Zhou, Yu & Shen, Wenjing, 2023. "Joint modeling for early predictions of Li-ion battery cycle life and degradation trajectory," Energy, Elsevier, vol. 277(C).
    19. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    20. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.