IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v66y2014icp775-786.html
   My bibliography  Save this article

How does wind farm performance decline with age?

Author

Abstract

Ageing is a fact of life. Just as with conventional forms of power generation, the energy produced by a wind farm gradually decreases over its lifetime, perhaps due to falling availability, aerodynamic performance or conversion efficiency. Understanding these factors is however complicated by the highly variable availability of the wind.

Suggested Citation

  • Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
  • Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:775-786
    DOI: 10.1016/j.renene.2013.10.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113005727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.10.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Green, Richard & Vasilakos, Nicholas, 2010. "Market behaviour with large amounts of intermittent generation," Energy Policy, Elsevier, vol. 38(7), pages 3211-3220, July.
    2. Fox, Neil I., 2011. "A tall tower study of Missouri winds," Renewable Energy, Elsevier, vol. 36(1), pages 330-337.
    3. Kubik, M.L. & Coker, P.J. & Barlow, J.F. & Hunt, C., 2013. "A study into the accuracy of using meteorological wind data to estimate turbine generation output," Renewable Energy, Elsevier, vol. 51(C), pages 153-158.
    4. Schallenberg-Rodriguez, Julieta, 2013. "A methodological review to estimate techno-economical wind energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 272-287.
    5. Conroy, Niamh & Deane, J.P. & Ó Gallachóir, Brian P., 2011. "Wind turbine availability: Should it be time or energy based? – A case study in Ireland," Renewable Energy, Elsevier, vol. 36(11), pages 2967-2971.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
    2. Rubert, T. & McMillan, D. & Niewczas, P., 2018. "A decision support tool to assist with lifetime extension of wind turbines," Renewable Energy, Elsevier, vol. 120(C), pages 423-433.
    3. Gualtieri, Giovanni, 2016. "Atmospheric stability varying wind shear coefficients to improve wind resource extrapolation: A temporal analysis," Renewable Energy, Elsevier, vol. 87(P1), pages 376-390.
    4. Engelhorn, Thorsten & Müsgens, Felix, 2018. "How to estimate wind-turbine infeed with incomplete stock data: A general framework with an application to turbine-specific market values in Germany," Energy Economics, Elsevier, vol. 72(C), pages 542-557.
    5. Höfer, Tim & Madlener, Reinhard, 2018. "Locational (In-)Efficiency of Renewable Power Generation Feeding in the Electricity Grid: A Spatial Regression Analysis," FCN Working Papers 13/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised 01 Dec 2019.
    6. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    7. Newbery, David, 2018. "Policies for decarbonizing a liberalized power sector," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-24.
    8. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    9. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    10. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    11. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    12. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
    13. Rahimiyan, Morteza, 2014. "A statistical cognitive model to assess impact of spatially correlated wind production on market behaviors," Applied Energy, Elsevier, vol. 122(C), pages 62-72.
    14. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    15. Crippa, Paola & Alifa, Mariana & Bolster, Diogo & Genton, Marc G. & Castruccio, Stefano, 2021. "A temporal model for vertical extrapolation of wind speed and wind energy assessment," Applied Energy, Elsevier, vol. 301(C).
    16. Foley, A.M. & Ó Gallachóir, B.P. & McKeogh, E.J. & Milborrow, D. & Leahy, P.G., 2013. "Addressing the technical and market challenges to high wind power integration in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 692-703.
    17. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    18. Hach, Daniel & Chyong, Chi Kong & Spinler, Stefan, 2016. "Capacity market design options: A dynamic capacity investment model and a GB case study," European Journal of Operational Research, Elsevier, vol. 249(2), pages 691-705.
    19. Green, Richard & Vasilakos, Nicholas, 2011. "The economics of offshore wind," Energy Policy, Elsevier, vol. 39(2), pages 496-502, February.
    20. Rodrigues, R.B. & Mendes, V.M.F. & Catalão, J.P.S., 2012. "Protection of interconnected wind turbines against lightning effects: Overvoltages and electromagnetic transients study," Renewable Energy, Elsevier, vol. 46(C), pages 232-240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:775-786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.