IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v327y2022ics030626192201340x.html
   My bibliography  Save this article

Big data-driven decoupling framework enabling quantitative assessments of electric vehicle performance degradation

Author

Listed:
  • Zhao, Yang
  • Wang, Zhenpo
  • Shen, Zuo-Jun Max
  • Zhang, Lei
  • Dorrell, David G.
  • Sun, Fengchun

Abstract

Electric vehicle (EV) performance in terms of the available driving range per charge and the energy consumption rate continuously degrades during its service life. Quantitative assessments of EV performance degradation play an important role in EV residual value analysis, battery management, and battery recycling. However, EV performance degradation is highly sensitive to both ambient temperature and battery aging states; coupled factors make its quantification challenging. Here, a novel big data-driven decoupling framework is proposed to investigate the partial relationships between EV performance degradation and each individual variable (e.g., temperature and total driving distances). The core innovation involves the decoupling process that can enable real-world and large-scale degradation assessments. The basic functionality of the decoupling is achieved by an iterative learning framework where different machine learning-based models can communicate with each other. It achieves the advantages of unsupervised training and high performance; the mean absolute error can be controlled less than 0.1 in the model validation of EV ranges. Its effectiveness is verified using different real-world EV datasets. By utilizing the framework, the changes in the range and energy consumption of EVs across 10 urban areas in China are assessed. The results show that the range and energy consumption rate of EVs are more greatly influenced by ambient temperature than by battery aging. Less consideration of variable decoupling may yield misleading results in EV performance analysis. Our proposed framework opens avenues for quantifying EV performance degradation via real-world EV data, which is critical to onboard and cloud-based EV research.

Suggested Citation

  • Zhao, Yang & Wang, Zhenpo & Shen, Zuo-Jun Max & Zhang, Lei & Dorrell, David G. & Sun, Fengchun, 2022. "Big data-driven decoupling framework enabling quantitative assessments of electric vehicle performance degradation," Applied Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:appene:v:327:y:2022:i:c:s030626192201340x
    DOI: 10.1016/j.apenergy.2022.120083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201340X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    2. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    3. Fan Yang & Yuanyuan Xie & Yelin Deng & Chris Yuan, 2018. "Predictive modeling of battery degradation and greenhouse gas emissions from U.S. state-level electric vehicle operation," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    5. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    6. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    7. Lingling Li & Pengchong Wang & Kuei-Hsiang Chao & Yatong Zhou & Yang Xie, 2016. "Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-13, September.
    8. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    9. Zhao, Yang & Wang, Zhenpo & Shen, Zuo-Jun Max & Sun, Fengchun, 2021. "Data-driven framework for large-scale prediction of charging energy in electric vehicles," Applied Energy, Elsevier, vol. 282(PB).
    10. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    11. Schulz, Felix & Rode, Johannes, 2022. "Public charging infrastructure and electric vehicles in Norway," Energy Policy, Elsevier, vol. 160(C).
    12. Chao-Yang Wang & Guangsheng Zhang & Shanhai Ge & Terrence Xu & Yan Ji & Xiao-Guang Yang & Yongjun Leng, 2016. "Lithium-ion battery structure that self-heats at low temperatures," Nature, Nature, vol. 529(7587), pages 515-518, January.
    13. Guo, Zhaomiao & Zhou, Yan, 2019. "Residual value analysis of plug-in vehicles in the United States," Energy Policy, Elsevier, vol. 125(C), pages 445-455.
    14. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    15. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    16. Zeynali, Saeed & Nasiri, Nima & Marzband, Mousa & Ravadanegh, Sajad Najafi, 2021. "A hybrid robust-stochastic framework for strategic scheduling of integrated wind farm and plug-in hybrid electric vehicle fleets," Applied Energy, Elsevier, vol. 300(C).
    17. Zhao, Yang & Liu, Peng & Wang, Zhenpo & Zhang, Lei & Hong, Jichao, 2017. "Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods," Applied Energy, Elsevier, vol. 207(C), pages 354-362.
    18. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    19. Menglong Hao & Jian Li & Saehong Park & Scott Moura & Chris Dames, 2018. "Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy," Nature Energy, Nature, vol. 3(10), pages 899-906, October.
    20. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    21. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    22. Ghasemi, Ahmad & Jamshidi Monfared, Houman & Loni, Abdolah & Marzband, Mousa, 2021. "CVaR-based retail electricity pricing in day-ahead scheduling of microgrids," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhao, Yiwen & Zhan, Weipeng, 2023. "Stacking regression technology with event profile for electric vehicle fast charging behavior prediction," Applied Energy, Elsevier, vol. 336(C).
    2. Wang, Qiao & Ye, Min & Cai, Xue & Sauer, Dirk Uwe & Li, Weihan, 2023. "Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications," Applied Energy, Elsevier, vol. 350(C).
    3. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    4. Wang, Shuhui & Wang, Zhenpo & Cheng, Ximing & Zhang, Zhaosheng, 2023. "A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    4. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    5. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    6. Sun, Xilei & Fu, Jianqin, 2024. "Experiment investigation for interconnected effects of driving cycle and ambient temperature on bidirectional energy flows in an electric sport utility vehicle," Energy, Elsevier, vol. 300(C).
    7. Hu, Xiaoqian & Wang, Chao & Lim, Ming K. & Chen, Wei-Qiang & Teng, Limin & Wang, Peng & Wang, Heming & Zhang, Chao & Yao, Cuiyou & Ghadimi, Pezhman, 2023. "Critical systemic risk sources in global lithium-ion battery supply networks: Static and dynamic network perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Jingzhao Zhang & Yanan Wang & Benben Jiang & Haowei He & Shaobo Huang & Chen Wang & Yang Zhang & Xuebing Han & Dongxu Guo & Guannan He & Minggao Ouyang, 2023. "Realistic fault detection of li-ion battery via dynamical deep learning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Xu, Bin & Shi, Junzhe & Li, Sixu & Li, Huayi & Wang, Zhe, 2021. "Energy consumption and battery aging minimization using a Q-learning strategy for a battery/ultracapacitor electric vehicle," Energy, Elsevier, vol. 229(C).
    10. Kang, Yongzhe & Duan, Bin & Zhou, Zhongkai & Shang, Yunlong & Zhang, Chenghui, 2020. "Online multi-fault detection and diagnosis for battery packs in electric vehicles," Applied Energy, Elsevier, vol. 259(C).
    11. Bogdan Ovidiu Varga & Arsen Sagoian & Florin Mariasiu, 2019. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges," Energies, MDPI, vol. 12(5), pages 1-19, March.
    12. Vepsäläinen, Jari & Otto, Kevin & Lajunen, Antti & Tammi, Kari, 2019. "Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions," Energy, Elsevier, vol. 169(C), pages 433-443.
    13. Neha Bhushan & Saad Mekhilef & Kok Soon Tey & Mohamed Shaaban & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "Overview of Model- and Non-Model-Based Online Battery Management Systems for Electric Vehicle Applications: A Comprehensive Review of Experimental and Simulation Studies," Sustainability, MDPI, vol. 14(23), pages 1-31, November.
    14. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    15. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    16. Jinrui Nan & Bo Deng & Wanke Cao & Jianjun Hu & Yuhua Chang & Yili Cai & Zhiwei Zhong, 2022. "Big Data-Based Early Fault Warning of Batteries Combining Short-Text Mining and Grey Correlation," Energies, MDPI, vol. 15(15), pages 1-19, July.
    17. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    19. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    20. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:327:y:2022:i:c:s030626192201340x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.