IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v611y2022i7936d10.1038_s41586-022-05281-0.html
   My bibliography  Save this article

Fast charging of energy-dense lithium-ion batteries

Author

Listed:
  • Chao-Yang Wang

    (Pennsylvania State University
    EC Power)

  • Teng Liu

    (Pennsylvania State University)

  • Xiao-Guang Yang

    (Pennsylvania State University
    National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology)

  • Shanhai Ge

    (Pennsylvania State University)

  • Nathaniel V. Stanley

    (EC Power)

  • Eric S. Rountree

    (EC Power)

  • Yongjun Leng

    (Pennsylvania State University)

  • Brian D. McCarthy

    (EC Power)

Abstract

Lithium-ion batteries with nickel-rich layered oxide cathodes and graphite anodes have reached specific energies of 250–300 Wh kg−1 (refs. 1,2), and it is now possible to build a 90 kWh electric vehicle (EV) pack with a 300-mile cruise range. Unfortunately, using such massive batteries to alleviate range anxiety is ineffective for mainstream EV adoption owing to the limited raw resource supply and prohibitively high cost. Ten-minute fast charging enables downsizing of EV batteries for both affordability and sustainability, without causing range anxiety. However, fast charging of energy-dense batteries (more than 250 Wh kg−1 or higher than 4 mAh cm−2) remains a great challenge3,4. Here we combine a material-agnostic approach based on asymmetric temperature modulation with a thermally stable dual-salt electrolyte to achieve charging of a 265 Wh kg−1 battery to 75% (or 70%) state of charge in 12 (or 11) minutes for more than 900 (or 2,000) cycles. This is equivalent to a half million mile range in which every charge is a fast charge. Further, we build a digital twin of such a battery pack to assess its cooling and safety and demonstrate that thermally modulated 4C charging only requires air convection. This offers a compact and intrinsically safe route to cell-to-pack development. The rapid thermal modulation method to yield highly active electrochemical interfaces only during fast charging has important potential to realize both stability and fast charging of next-generation materials, including anodes like silicon and lithium metal.

Suggested Citation

  • Chao-Yang Wang & Teng Liu & Xiao-Guang Yang & Shanhai Ge & Nathaniel V. Stanley & Eric S. Rountree & Yongjun Leng & Brian D. McCarthy, 2022. "Fast charging of energy-dense lithium-ion batteries," Nature, Nature, vol. 611(7936), pages 485-490, November.
  • Handle: RePEc:nat:nature:v:611:y:2022:i:7936:d:10.1038_s41586-022-05281-0
    DOI: 10.1038/s41586-022-05281-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05281-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05281-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Xinlei & Li, Yalun & Wang, Huizhi & Liu, Xinhua & Wu, Yu & Yang, Shichun & Zhao, Zhengming & Ouyang, Minggao, 2023. "Probing inhomogeneity of electrical-thermal distribution on electrode during fast charging for lithium-ion batteries," Applied Energy, Elsevier, vol. 336(C).
    2. Abbasi, H.N. & Zeeshan, Muhammad, 2023. "An integrated Geographic Information System and Analytical Hierarchy process based approach for site suitability analysis of on-grid hybrid concentrated solar-biomass powerplant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Ryan S. Longchamps & Shanhai Ge & Zachary J. Trdinich & Jie Liao & Chao-Yang Wang, 2024. "Battery electronification: intracell actuation and thermal management," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Cynthia Thamires da Silva & Bruno Martin de Alcântara Dias & Rui Esteves Araújo & Eduardo Lorenzetti Pellini & Armando Antônio Maria Laganá, 2023. "Two-Outputs Nonlinear Grey Box Model for Lithium-Ion Batteries," Energies, MDPI, vol. 16(5), pages 1-15, February.
    5. Yunwen Feng & Jean-Daniel Saphores & Hilary Nixon & Monica Ramirez Ibarra, 2024. "Battery Electric Vehicles: Travel Characteristics of Early Adopters," Sustainability, MDPI, vol. 16(10), pages 1-23, May.
    6. Heng Huang & Zhifu Zhou & Linsong Gao & Yang Li & Xinyu Liu & Zheng Huang & Yubai Li & Yongchen Song, 2023. "Investigation and Optimization of Fast Cold Start of 18650 Lithium-Ion Cell by Heating Film-Based Heating Method," Energies, MDPI, vol. 16(2), pages 1-26, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:611:y:2022:i:7936:d:10.1038_s41586-022-05281-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.