IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v146y2021ics1364032121004512.html
   My bibliography  Save this article

Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review

Author

Listed:
  • Lai, Xin
  • Huang, Yunfeng
  • Deng, Cong
  • Gu, Huanghui
  • Han, Xuebing
  • Zheng, Yuejiu
  • Ouyang, Minggao

Abstract

With the rapid development of electric vehicles, the safe and environmentally friendly disposal of retired lithium batteries (LIBs) is becoming a serious issue. Echelon utilization of the retired LIBs is a promising scheme because of its considerable potential for generating economic and environmental value. The most outstanding technical challenge of echelon utilization is how to sort and regroup the large-scale retired LIBs efficiently and accurately. In this paper, the status and challenges of echelon utilization for the retired LIBs are reviewed. First, the criteria, policies, regulations, markets, costs, and values of echelon utilization are summarized comprehensively to illustrate its potential and expose existing problems and pain points. Second, the key technologies related to large-scale echelon utilization of LIBs are detailed; valuable opinions and technical routes are presented for the selection and rapid estimation of sorting indices, the classification and regrouping algorithm, evaluation of the sorting results, and other aspects. In particular, a multilevel and multidimensional fast sorting method is proposed for large-scale echelon utilization of retired LIBs that considers different scenario constraints. Valuable solutions to the key technical problems are given, such as predicting the characteristics of retired LIBs with in-service data and building a fast sorting model from a small number of samples to sort large quantities of LIBs. Finally, the technological prospects of echelon utilization are discussed. Big data and artificial intelligence can be used to promote further development and application of echelon utilization, which may eventually be applied to managing the whole life cycle of LIBs.

Suggested Citation

  • Lai, Xin & Huang, Yunfeng & Deng, Cong & Gu, Huanghui & Han, Xuebing & Zheng, Yuejiu & Ouyang, Minggao, 2021. "Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004512
    DOI: 10.1016/j.rser.2021.111162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121004512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mingant, R. & Bernard, J. & Sauvant-Moynot, V., 2016. "Novel state-of-health diagnostic method for Li-ion battery in service," Applied Energy, Elsevier, vol. 183(C), pages 390-398.
    2. Jichao Hong & Zhenpo Wang & Peng Liu, 2017. "Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-16, July.
    3. Zeng, Xianlai & Li, Jinhui & Liu, Lili, 2015. "Solving spent lithium-ion battery problems in China: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1759-1767.
    4. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Zhao, Yang & Liu, Peng & Wang, Zhenpo & Zhang, Lei & Hong, Jichao, 2017. "Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods," Applied Energy, Elsevier, vol. 207(C), pages 354-362.
    6. Zhang, Youlang & Li, Yan & Tao, Yibin & Ye, Jilei & Pan, Aiqiang & Li, Xinzhou & Liao, Qiangqiang & Wang, Zhiqin, 2020. "Performance assessment of retired EV battery modules for echelon use," Energy, Elsevier, vol. 193(C).
    7. Saxena, Samveg & MacDonald, Jason & Moura, Scott, 2015. "Charging ahead on the transition to electric vehicles with standard 120V wall outlets," Applied Energy, Elsevier, vol. 157(C), pages 720-728.
    8. Heymans, Catherine & Walker, Sean B. & Young, Steven B. & Fowler, Michael, 2014. "Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling," Energy Policy, Elsevier, vol. 71(C), pages 22-30.
    9. Dongxu Guo & Geng Yang & Guangjin Zhao & Mengchao Yi & Xuning Feng & Xuebing Han & Languang Lu & Minggao Ouyang, 2020. "Determination of the Differential Capacity of Lithium-Ion Batteries by the Deconvolution of Electrochemical Impedance Spectra," Energies, MDPI, vol. 13(4), pages 1-14, February.
    10. Chu, Zhengyu & Feng, Xuning & Lu, Languang & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2017. "Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model," Applied Energy, Elsevier, vol. 204(C), pages 1240-1250.
    11. Lai, Xin & Yi, Wei & Cui, Yifan & Qin, Chao & Han, Xuebing & Sun, Tao & Zhou, Long & Zheng, Yuejiu, 2021. "Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter," Energy, Elsevier, vol. 216(C).
    12. Zheng, Yuejiu & Wang, Jingjing & Qin, Chao & Lu, Languang & Han, Xuebing & Ouyang, Minggao, 2019. "A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 185(C), pages 361-371.
    13. Tao, Ye & Huang, Miaohua & Chen, Yupu & Yang, Lan, 2020. "Orderly charging strategy of battery electric vehicle driven by real-world driving data," Energy, Elsevier, vol. 193(C).
    14. Assunção, André & Moura, Pedro S. & de Almeida, Aníbal T., 2016. "Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy," Applied Energy, Elsevier, vol. 181(C), pages 120-131.
    15. Zheng, Yuejiu & Qin, Chao & Lai, Xin & Han, Xuebing & Xie, Yi, 2019. "A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Gur, K. & Chatzikyriakou, D. & Baschet, C. & Salomon, M., 2018. "The reuse of electrified vehicle batteries as a means of integrating renewable energy into the European electricity grid: A policy and market analysis," Energy Policy, Elsevier, vol. 113(C), pages 535-545.
    17. Fan Yang & Yuanyuan Xie & Yelin Deng & Chris Yuan, 2018. "Predictive modeling of battery degradation and greenhouse gas emissions from U.S. state-level electric vehicle operation," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    18. Uddin, Kotub & Jackson, Tim & Widanage, Widanalage D. & Chouchelamane, Gael & Jennings, Paul A. & Marco, James, 2017. "On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system," Energy, Elsevier, vol. 133(C), pages 710-722.
    19. Yang, Jufeng & Xia, Bing & Huang, Wenxin & Fu, Yuhong & Mi, Chris, 2018. "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied Energy, Elsevier, vol. 212(C), pages 1589-1600.
    20. Martinez-Laserna, E. & Gandiaga, I. & Sarasketa-Zabala, E. & Badeda, J. & Stroe, D.-I. & Swierczynski, M. & Goikoetxea, A., 2018. "Battery second life: Hype, hope or reality? A critical review of the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 701-718.
    21. Deng, Zhongwei & Hu, Xiaosong & Lin, Xianke & Che, Yunhong & Xu, Le & Guo, Wenchao, 2020. "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy, Elsevier, vol. 205(C).
    22. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    23. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Wenjun & Zhu, Jiangong & Qiao, Dongdong & Jiang, Bo & Wang, Xueyuan & Wei, Xuezhe & Dai, Haifeng, 2024. "Prediction of nonlinear degradation knee-point and remaining useful life for lithium-ion batteries using relaxation voltage," Energy, Elsevier, vol. 294(C).
    2. Ali, Hayder & Khan, Hassan Abbas & Pecht, Michael, 2022. "Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Liu, Xingtao & Tang, Qinbin & Feng, Yitian & Lin, Mingqiang & Meng, Jinhao & Wu, Ji, 2023. "Fast sorting method of retired batteries based on multi-feature extraction from partial charging segment," Applied Energy, Elsevier, vol. 351(C).
    4. Gu, Pingwei & Zhang, Ying & Duan, Bin & Zhang, Chenghui & Kang, Yongzhe, 2024. "Rapid and flexible lithium-ion battery performance evaluation using random charging curve based on deep learning," Energy, Elsevier, vol. 293(C).
    5. Lv, Haichao & Kang, Lixia & Liu, Yongzhong, 2023. "Analysis of strategies to maximize the cycle life of lithium-ion batteries based on aging trajectory prediction," Energy, Elsevier, vol. 275(C).
    6. Ma, Chen & Chang, Long & Cui, Naxin & Duan, Bin & Zhang, Yulong & Yu, Zhihao, 2022. "Statistical relationships between numerous retired lithium-ion cells and packs with random sampling for echelon utilization," Energy, Elsevier, vol. 257(C).
    7. Gu, Xin & Li, Jinglun & Zhu, Yuhao & Wang, Yue & Mao, Ziheng & Shang, Yunlong, 2023. "A quick and intelligent screening method for large-scale retired batteries based on cloud-edge collaborative architecture," Energy, Elsevier, vol. 285(C).
    8. Lu, Jiajia & Zhang, Yanqiong & Huang, Weiwei & Omran, Mamdouh & Zhang, Fan & Gao, Lei & Chen, Guo, 2023. "Reductive roasting of cathode powder of spent ternary lithium-ion battery by pyrolysis of invasive plant Crofton weed," Renewable Energy, Elsevier, vol. 206(C), pages 86-96.
    9. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Li, Penghua & Zhang, Zijian & Grosu, Radu & Deng, Zhongwei & Hou, Jie & Rong, Yujun & Wu, Rui, 2022. "An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Aree Wangsupphaphol & Surachai Chaitusaney & Mohamed Salem, 2023. "A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    13. Shengyu Tao & Haizhou Liu & Chongbo Sun & Haocheng Ji & Guanjun Ji & Zhiyuan Han & Runhua Gao & Jun Ma & Ruifei Ma & Yuou Chen & Shiyi Fu & Yu Wang & Yaojie Sun & Yu Rong & Xuan Zhang & Guangmin Zhou , 2023. "Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Zhang, Huiming & Zhu, Kexin & Hang, Zixuan & Zhou, Dequn & Zhou, Yi & Xu, Zhidong, 2022. "Waste battery-to-reutilization decisions under government subsidies: An evolutionary game approach," Energy, Elsevier, vol. 259(C).
    15. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
    16. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Zhang, Huiming & Huang, Jiying & Hu, Ruohan & Zhou, Dequn & Khan, Haroon ur Rashid & Ma, Changxian, 2020. "Echelon utilization of waste power batteries in new energy vehicles: Review of Chinese policies," Energy, Elsevier, vol. 206(C).
    3. Wu, Wei & Lin, Boqiang & Xie, Chunping & Elliott, Robert J.R. & Radcliffe, Jonathan, 2020. "Does energy storage provide a profitable second life for electric vehicle batteries?," Energy Economics, Elsevier, vol. 92(C).
    4. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    5. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    6. Horesh, Noah & Quinn, Casey & Wang, Hongjie & Zane, Regan & Ferry, Mike & Tong, Shijie & Quinn, Jason C., 2021. "Driving to the future of energy storage: Techno-economic analysis of a novel method to recondition second life electric vehicle batteries," Applied Energy, Elsevier, vol. 295(C).
    7. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Applied Energy, Elsevier, vol. 300(C).
    8. Lai, Xin & Yi, Wei & Cui, Yifan & Qin, Chao & Han, Xuebing & Sun, Tao & Zhou, Long & Zheng, Yuejiu, 2021. "Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter," Energy, Elsevier, vol. 216(C).
    9. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Hong Eun Moon & Yoon Hee Ha & Kyung Nam Kim, 2022. "Comparative Economic Analysis of Solar PV and Reused EV Batteries in the Residential Sector of Three Emerging Countries—The Philippines, Indonesia, and Vietnam," Energies, MDPI, vol. 16(1), pages 1-26, December.
    11. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    12. Zheng, Yuejiu & Cui, Yifan & Han, Xuebing & Ouyang, Minggao, 2021. "A capacity prediction framework for lithium-ion batteries using fusion prediction of empirical model and data-driven method," Energy, Elsevier, vol. 237(C).
    13. Chen, Jianguo & Han, Xuebing & Sun, Tao & Zheng, Yuejiu, 2024. "Analysis and prediction of battery aging modes based on transfer learning," Applied Energy, Elsevier, vol. 356(C).
    14. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
    15. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    16. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    18. Bai, Hanyu & Lei, Shunbo & Geng, Sijia & Hu, Xiaosong & Li, Zhaojian & Song, Ziyou, 2024. "Techno-economic assessment of isolated micro-grids with second-life batteries: A reliability-oriented iterative design framework," Applied Energy, Elsevier, vol. 364(C).
    19. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    20. Chen, Dan & Meng, Jinhao & Huang, Huanyang & Wu, Ji & Liu, Ping & Lu, Jiwu & Liu, Tianqi, 2022. "An Empirical-Data Hybrid Driven Approach for Remaining Useful Life prediction of lithium-ion batteries considering capacity diving," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.