IDEAS home Printed from https://ideas.repec.org/r/wpa/wuwpem/0503004.html
   My bibliography  Save this item

Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
  2. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
  3. Sattarhoff, Cristina & Gronwald, Marc, 2022. "Measuring informational efficiency of the European carbon market — A quantitative evaluation of higher order dependence," International Review of Financial Analysis, Elsevier, vol. 84(C).
  4. Wang, Yuanyuan & Shang, Pengjian, 2018. "A new measurement of financial time irreversibility based on information measures method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 221-230.
  5. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2016. "Anomalous volatility scaling in high frequency financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 434-445.
  6. Onur Özdemir & Anoop S. Kumar, 2024. "Dynamic Efficiency and Herd Behavior During Pre- and Post-COVID-19 in the NFT Market: Evidence from Multifractal Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1255-1279, March.
  7. Cajueiro, Daniel O. & Tabak, Benjamin M., 2007. "Long-range dependence and multifractality in the term structure of LIBOR interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 603-614.
  8. Siew Ann Cheong, 2013. "Econophysics: An Experimental Course for Advanced Undergraduates in the Nanyang Technological University," IIM Kozhikode Society & Management Review, , vol. 2(2), pages 79-99, July.
  9. Tiwari, Aviral Kumar & Umar, Zaghum & Alqahtani, Faisal, 2021. "Existence of long memory in crude oil and petroleum products: Generalised Hurst exponent approach," Research in International Business and Finance, Elsevier, vol. 57(C).
  10. Luis Miguel Doncel & Pilar Grau-Carles & Jorge Sainz, 2009. "On the long-term behavior of mutual fund returns," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 653-660.
  11. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
  12. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.
  13. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.
  14. Riccardo Junior Buonocore & Tomaso Aste & Tiziana Di Matteo, 2015. "Measuring multiscaling in financial time-series," Papers 1509.05471, arXiv.org, revised Sep 2015.
  15. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
  16. Gaffeo, Edoardo, 2019. "Leverage and evolving heterogeneous beliefs in a simple agent-based financial market," Finance Research Letters, Elsevier, vol. 29(C), pages 272-279.
  17. Los, Cornelis A. & Yu, Bing, 2008. "Persistence characteristics of the Chinese stock markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 64-82.
  18. Aslan, Aylin & Sensoy, Ahmet, 2020. "Intraday efficiency-frequency nexus in the cryptocurrency markets," Finance Research Letters, Elsevier, vol. 35(C).
  19. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
  20. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
  21. Dilip Kumar & S. Maheswaran, 2015. "Long memory in Indian exchange rates: an application of power-law scaling analysis," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 8(1-2), pages 90-107, July.
  22. J. Coulon & Y. Malevergne, 2011. "Heterogeneous expectations and long-range correlation of the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1329-1356, November.
  23. Denzler, Stefan M. & Dacorogna, Michel M. & Muller, Ulrich A. & McNeil, Alexander J., 2006. "From default probabilities to credit spreads: Credit risk models do explain market prices," Finance Research Letters, Elsevier, vol. 3(2), pages 79-95, June.
  24. Miguel Ángel Sánchez & Juan E Trinidad & José García & Manuel Fernández, 2015. "The Effect of the Underlying Distribution in Hurst Exponent Estimation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
  25. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
  26. He, Ling-Yun & Fan, Ying & Wei, Yi-Ming, 2009. "Impact of speculator's expectations of returns and time scales of investment on crude oil price behaviors," Energy Economics, Elsevier, vol. 31(1), pages 77-84, January.
  27. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
  28. Kristoufek, Ladislav, 2009. "R/S analysis and DFA: finite sample properties and confidence intervals," MPRA Paper 16446, University Library of Munich, Germany.
  29. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
  30. Marcus F. da Silva & Eder Johnson de Area Leão Pereira & Idaraí Santos de Santana & José Garcia Vivas Miranda, 2013. "Pattern of fluctuations in the exchange rate change from fixed to floating, in Brazil, Argentina and Mexico," Economics Bulletin, AccessEcon, vol. 33(2), pages 1547-1555.
  31. Sonali Agarwal & Anshul Vats, 2024. "A Comparative Study of Financial Crises: Fractal Dissection of Investor Rationality," Vision, , vol. 28(2), pages 193-209, April.
  32. Aditya Banerjee & Samit Paul, 2024. "Idiosyncrasies of Intraday Risk in Emerging and Developed Markets: Efficacy of the MCS-GARCH Model and Extreme Value Theory," Global Business Review, International Management Institute, vol. 25(2), pages 468-490, April.
  33. Patrice Abry & Yannick Malevergne & Herwig Wendt & Marc Senneret & Laurent Jaffrès & Blaise Liaustrat, 2019. "Shuffling for understanding multifractality, application to asset price time series," Post-Print hal-02361738, HAL.
  34. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
  35. Cajueiro, Daniel O. & Tabak, Benjamin M., 2009. "Multifractality and herding behavior in the Japanese stock market," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 497-504.
  36. Chuo Chang, 2020. "Dynamic correlations and distributions of stock returns on China's stock markets," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 10(1), pages 1-6.
  37. Lin, Xiaoqiang & Fei, Fangyu, 2013. "Long memory revisit in Chinese stock markets: Based on GARCH-class models and multiscale analysis," Economic Modelling, Elsevier, vol. 31(C), pages 265-275.
  38. Cajueiro, Daniel O. & Tabak, Benjamin M., 2010. "Fluctuation dynamics in US interest rates and the role of monetary policy," Finance Research Letters, Elsevier, vol. 7(3), pages 163-169, September.
  39. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
  40. Ramos-Requena, J.P. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A., 2017. "Introducing Hurst exponent in pair trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 39-45.
  41. Wang, Yudong & Wu, Chongfeng, 2012. "What can we learn from the history of gasoline crack spreads?: Long memory, structural breaks and modeling implications," Economic Modelling, Elsevier, vol. 29(2), pages 349-360.
  42. Kristoufek, Ladislav & Vosvrda, Miloslav, 2016. "Gold, currencies and market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 27-34.
  43. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
  44. Un, Kuok Sin & Ausloos, Marcel, 2022. "Equity premium prediction: Taking into account the role of long, even asymmetric, swings in stock market behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
  45. Chai, Shanglei & Yang, Xiaoli & Zhang, Zhen & Abedin, Mohammad Zoynul & Lucey, Brian, 2022. "Regional imbalances of market efficiency in China’s pilot emission trading schemes (ETS): A multifractal perspective," Research in International Business and Finance, Elsevier, vol. 63(C).
  46. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
  47. Goddard, John & Onali, Enrico, 2016. "Long memory and multifractality: A joint test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 288-294.
  48. La Spada Gabriele & Lillo Fabrizio, 2014. "The effect of round-off error on long memory processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 445-482, September.
  49. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
  50. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M., 2020. "The (in)efficiency of NYMEX energy futures: A multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
  51. Rivera-Castro, Miguel A. & Miranda, José G.V. & Cajueiro, Daniel O. & Andrade, Roberto F.S., 2012. "Detecting switching points using asymmetric detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 170-179.
  52. Selçuk BAYRACI, 2017. "Long-memory, self-similarity and scaling of the long-term government bond yields: Evidence from Turkey and the USA," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(612), A), pages 71-82, Autumn.
  53. Sensoy, A., 2013. "Effects of monetary policy on the long memory in interest rates: Evidence from an emerging market," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 85-88.
  54. Bui, Quynh & Ślepaczuk, Robert, 2022. "Applying Hurst Exponent in pair trading strategies on Nasdaq 100 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
  55. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
  56. Tilfani, Oussama & Kristoufek, Ladislav & Ferreira, Paulo & El Boukfaoui, My Youssef, 2022. "Heterogeneity in economic relationships: Scale dependence through the multivariate fractal regression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
  57. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2017. "A multifractal detrended fluctuation analysis of financial market efficiency: Comparison using Dow Jones sector ETF indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 182-192.
  58. Kiran Sharma & Parul Khurana, 2021. "Growth and dynamics of Econophysics: a bibliometric and network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4417-4436, May.
  59. Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
  60. Jamdee, Sutthisit & Los, Cornelis A., 2007. "Long memory options: LM evidence and simulations," Research in International Business and Finance, Elsevier, vol. 21(2), pages 260-280, June.
  61. Morales, Raffaello & Di Matteo, T. & Aste, Tomaso, 2013. "Non-stationary multifractality in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6470-6483.
  62. Kristoufek, Ladislav, 2009. "Distinguishing between short and long range dependence: Finite sample properties of rescaled range and modified rescaled range," MPRA Paper 16424, University Library of Munich, Germany.
  63. Espinosa Méndez, Christian, 2005. "Evidencia De Comportamiento Caótico En Indices Bursátiles Americanos [Evidence Of Chaotic Behavior In American Stock Markets]," MPRA Paper 2794, University Library of Munich, Germany, revised 30 Jun 2006.
  64. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
  65. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
  66. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX," Energy Economics, Elsevier, vol. 59(C), pages 167-178.
  67. Antoniades, I.P. & Karakatsanis, L.P. & Pavlos, E.G., 2021. "Dynamical characteristics of global stock markets based on time dependent Tsallis non-extensive statistics and generalized Hurst exponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
  68. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
  69. Mitra, S.K. & Bawa, Jaslene, 2017. "Can trade opportunities and returns be generated in a trend persistent series? Evidence from global indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 124-135.
  70. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
  71. Giuseppe Brandi & T. Di Matteo, 2020. "On the statistics of scaling exponents and the Multiscaling Value at Risk," Papers 2002.04164, arXiv.org, revised Mar 2021.
  72. Horta, Paulo & Lagoa, Sérgio & Martins, Luís, 2014. "The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 140-153.
  73. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
  74. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
  75. Lotfalinezhad, Hamze & Maleki, Ali, 2020. "TTA, a new approach to estimate Hurst exponent with less estimation error and computational time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
  76. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
  77. Hallam, Mark & Olmo, Jose, 2014. "Forecasting daily return densities from intraday data: A multifractal approach," International Journal of Forecasting, Elsevier, vol. 30(4), pages 863-881.
  78. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
  79. Xu, Shiyun & Shao, Menglin & Qiao, Wenxuan & Shang, Pengjian, 2018. "Generalized AIC method based on higher-order moments and entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1127-1138.
  80. Siokis, Fotios M., 2014. "European economies in crisis: A multifractal analysis of disruptive economic events and the effects of financial assistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 283-292.
  81. Francesco Caravelli & James Requeima & Cozmin Ududec & Ali Ashtari & Tiziana Di Matteo & Tomaso Aste, 2015. "Multi-scaling of wholesale electricity prices," Papers 1507.06219, arXiv.org.
  82. Noemi Nava & T. Di Matteo & Tomaso Aste, 2015. "Anomalous volatility scaling in high frequency financial data," Papers 1503.08465, arXiv.org, revised Dec 2015.
  83. Aslam, Faheem & Zil-e-huma, & Bibi, Rashida & Ferreira, Paulo, 2022. "Cross-correlations between economic policy uncertainty and precious and industrial metals: A multifractal cross-correlation analysis," Resources Policy, Elsevier, vol. 75(C).
  84. Alfi, V. & Coccetti, F. & Marotta, M. & Petri, A. & Pietronero, L., 2006. "Exact results for the roughness of a finite size random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 127-131.
  85. Tsionas, Mike G., 2021. "Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
  86. Gilles Zumbach, 2011. "Characterizing heteroskedasticity," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1357-1369, October.
  87. Vidal-Tomás, David, 2022. "Which cryptocurrency data sources should scholars use?," International Review of Financial Analysis, Elsevier, vol. 81(C).
  88. Cajueiro, Daniel O. & Gogas, Periklis & Tabak, Benjamin M., 2009. "Does financial market liberalization increase the degree of market efficiency? The case of the Athens stock exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 50-57, March.
  89. Ladislav Kristoufek, 2012. "Fractal Markets Hypothesis And The Global Financial Crisis: Scaling, Investment Horizons And Liquidity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1-13.
  90. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.
  91. Marc Gronwald & Sania Wadud & Kingsley Dogah, 2024. "Oil Market Efficiency, Quantity of Information, and Oil Market Turbulence," CESifo Working Paper Series 10995, CESifo.
  92. Wu, Zhenyu & Shang, Pengjian & Xiong, Hui, 2018. "An improvement of the measurement of time series irreversibility with visibility graph approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 370-378.
  93. Yalama, Abdullah & Celik, Sibel, 2013. "Real or spurious long memory characteristics of volatility: Empirical evidence from an emerging market," Economic Modelling, Elsevier, vol. 30(C), pages 67-72.
  94. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
  95. Daniel Cajueiro & Benjamin Tabak, 2006. "The long-range dependence phenomena in asset returns: the Chinese case," Applied Economics Letters, Taylor & Francis Journals, vol. 13(2), pages 131-133.
  96. Jeremy Turiel & Tomaso Aste, 2019. "Sector Neutral Portfolios: Long memory motifs persistence in market structure dynamics," Papers 1910.08628, arXiv.org, revised Feb 2021.
  97. dos Santos Maciel, Leandro, 2023. "Brazilian stock-market efficiency before and after COVID-19: The roles of fractality and predictability," Global Finance Journal, Elsevier, vol. 58(C).
  98. Gaël Kermarrec, 2020. "On Estimating the Hurst Parameter from Least-Squares Residuals. Case Study: Correlated Terrestrial Laser Scanner Range Noise," Mathematics, MDPI, vol. 8(5), pages 1-23, April.
  99. Steve Phelps & Wing Lon Ng, 2014. "A Simulation Analysis Of Herding And Unifractal Scaling Behaviour," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(1), pages 39-58, January.
  100. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
  101. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
  102. Bariviera, Aurelio F., 2021. "One model is not enough: Heterogeneity in cryptocurrencies’ multifractal profiles," Finance Research Letters, Elsevier, vol. 39(C).
  103. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Trinidad Segovia, J.E., 2013. "Measuring the self-similarity exponent in Lévy stable processes of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5330-5345.
  104. Puertas, Antonio M. & Clara-Rahola, Joaquim & Sánchez-Granero, Miguel A. & de las Nieves, F. Javier & Trinidad-Segovia, Juan E., 2023. "A new look at financial markets efficiency from linear response theory," Finance Research Letters, Elsevier, vol. 51(C).
  105. Giuseppe Brandi & T. Di Matteo, 2022. "Multiscaling and rough volatility: an empirical investigation," Papers 2201.10466, arXiv.org.
  106. Kristoufek, Ladislav, 2013. "Mixed-correlated ARFIMA processes for power-law cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6484-6493.
  107. Maciel, Leandro, 2021. "A new approach to portfolio management in the Brazilian equity market: Does assets efficiency level improve performance?," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 38-56.
  108. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
  109. Raffaello Morales & T. Di Matteo & Ruggero Gramatica & Tomaso Aste, 2011. "Dynamical Hurst exponent as a tool to monitor unstable periods in financial time series," Papers 1109.0465, arXiv.org.
  110. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Mensi, Walid & Kumar, Ronald Ravinesh, 2017. "Examining the efficiency and interdependence of US credit and stock markets through MF-DFA and MF-DXA approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 351-363.
  111. Ioan Roxana, 2020. "Capital Market Correlations Structure During The Covid-19 Crisis," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 6, pages 67-79, December.
  112. Matthieu Garcin, 2019. "Fractal analysis of the multifractality of foreign exchange rates [Analyse fractale de la multifractalité des taux de change]," Working Papers hal-02283915, HAL.
  113. Michele Caraglio & Fulvio Baldovin & Attilio L. Stella, 2021. "How Fast Does the Clock of Finance Run?—A Time-Definition Enforcing Stationarity and Quantifying Overnight Duration," JRFM, MDPI, vol. 14(8), pages 1-15, August.
  114. Rizvi, Syed Aun R. & Dewandaru, Ginanjar & Bacha, Obiyathulla I. & Masih, Mansur, 2014. "An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 86-99.
  115. Paulo Ferreira, 2020. "Dynamic long-range dependences in the Swiss stock market," Empirical Economics, Springer, vol. 58(4), pages 1541-1573, April.
  116. Tzouras, Spilios & Anagnostopoulos, Christoforos & McCoy, Emma, 2015. "Financial time series modeling using the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 50-68.
  117. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
  118. Ioannis P. Antoniades & Giuseppe Brandi & L. G. Magafas & T. Di Matteo, 2020. "The use of scaling properties to detect relevant changes in financial time series: a new visual warning tool," Papers 2010.08890, arXiv.org, revised Dec 2020.
  119. Krenar Avdulaj & Ladislav Kristoufek, 2020. "On Tail Dependence and Multifractality," Mathematics, MDPI, vol. 8(10), pages 1-13, October.
  120. Sharkasi, Adel & Crane, Martin & Ruskin, Heather J. & Matos, Jose A., 2006. "The reaction of stock markets to crashes and events: A comparison study between emerging and mature markets using wavelet transforms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 511-521.
  121. Huai-Long Shi & Zhi-Qiang Jiang & Wei-Xing Zhou, 2016. "Time-varying return predictability in the Chinese stock market," Papers 1611.04090, arXiv.org.
  122. Li, Wen & Yu, Cindy & Carriquiry, Alicia & Kliemann, Wolfgang, 2011. "The asymptotic behavior of the R/S statistic for fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 83-91, January.
  123. Sensoy, Ahmet & Aras, Guler & Hacihasanoglu, Erk, 2015. "Predictability dynamics of Islamic and conventional equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 222-248.
  124. Patrice Abry & Yannick Malevergne & Herwig Wendt & Stéphane Jaffard & Marc Senneret & Laurent Jaffrès, 2022. "Foreign Exchange Multivariate Multifractal Analysis," Post-Print hal-03735497, HAL.
  125. Estefanía Montoya-Cruz & José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Ángel Sánchez-Granero, 2020. "Exploring Arbitrage Strategies in Corporate Social Responsibility Companies," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
  126. Sutthisit Jamdee & Cornelis A. Los, 2005. "Multifractal Modeling of the US Treasury Term Structure and Fed Funds Rate," Finance 0502021, University Library of Munich, Germany.
  127. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
  128. Argyroudis, George S. & Siokis, Fotios M., 2019. "Spillover effects of Great Recession on Hong-Kong’s Real Estate Market: An analysis based on Causality Plane and Tsallis Curves of Complexity–Entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 576-586.
  129. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
  130. Chang, Lo-Bin & Geman, Stuart, 2013. "Empirical scaling laws and the aggregation of non-stationary data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5046-5052.
  131. Lee, Min-Jae & Choi, Sun-Yong, 2024. "Insights into the dynamics of market efficiency spillover of financial assets in different equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
  132. Panayotis G. Papaioannou & George P. Papaioannou & George Evangelidis & George Gavalakis, 2024. "Detecting Structural breakpoints in natural gas and electricity wholesale prices via Bayesian ensemble approach, in the era of energy prices turmoil of 2022 period: the cases of ten European markets," Papers 2410.07224, arXiv.org.
  133. J. B. Glattfelder & A. Dupuis & R. B. Olsen, 2010. "Patterns in high-frequency FX data: discovery of 12 empirical scaling laws," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 599-614.
  134. Dai Pra, P. & Pigato, P., 2015. "Multi-scaling of moments in stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3725-3747.
  135. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
  136. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  137. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
  138. Espinosa Méndez, Christian, 2007. "Efecto Fin De Semana Y Fin De Mes En El Mercado Bursatil Chileno [Effect Weekend And Effect Month End In The Chilean Stock Market]," MPRA Paper 3252, University Library of Munich, Germany.
  139. Sánchez-Granero, M.A. & Balladares, K.A. & Ramos-Requena, J.P. & Trinidad-Segovia, J.E., 2020. "Testing the efficient market hypothesis in Latin American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  140. Łukasz Bil & Dariusz Grech & Magdalena Zienowicz, 2017. "Asymmetry of price returns—Analysis and perspectives from a non-extensive statistical physics point of view," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-24, November.
  141. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
  142. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Working Papers hal-03230167, HAL.
  143. Ioannis P. Antoniades & Leonidas P. Karakatsanis & Evgenios G. Pavlos, 2020. "Dynamical Characteristics of Global Stock Markets Based on Time Dependent Tsallis Non-Extensive Statistics and Generalized Hurst Exponents," Papers 2012.06856, arXiv.org, revised Apr 2021.
  144. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
  145. Sensoy, A., 2013. "Time-varying long range dependence in market returns of FEAS members," Chaos, Solitons & Fractals, Elsevier, vol. 53(C), pages 39-45.
  146. Rim Ammar Lamouchi, 2020. "Long Memory and Stock Market Efficiency: Case of Saudi Arabia," International Journal of Economics and Financial Issues, Econjournals, vol. 10(3), pages 29-34.
  147. Goddard, John & Onali, Enrico, 2012. "Short and long memory in stock returns data," Economics Letters, Elsevier, vol. 117(1), pages 253-255.
  148. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
  149. V Dimitrova & M Fernández-Martínez & M A Sánchez-Granero & J E Trinidad Segovia, 2019. "Some comments on Bitcoin market (in)efficiency," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-14, July.
  150. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
  151. Mensi, Walid & Tiwari, Aviral Kumar & Yoon, Seong-Min, 2017. "Global financial crisis and weak-form efficiency of Islamic sectoral stock markets: An MF-DFA analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 135-146.
  152. Ferreira, Paulo, 2018. "Long-range dependencies of Eastern European stock markets: A dynamic detrended analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 454-470.
  153. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
  154. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
  155. Lim, Kian-Ping & Brooks, Robert D. & Hinich, Melvin J., 2008. "Nonlinear serial dependence and the weak-form efficiency of Asian emerging stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 527-544, December.
  156. Jale, Jader S. & Júnior, Sílvio F.A.X. & Stošić, Tatijana & Stošić, Borko & Ferreira, Tiago A.E., 2019. "Information flow between Ibovespa and constituent companies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 233-239.
  157. Bannigidadmath, Deepa & Narayan, Paresh Kumar, 2022. "Economic importance of correlations for energy and other commodities," Energy Economics, Elsevier, vol. 107(C).
  158. Hammami, Algia & Ghenimi, Ameni & Bouri, Abdelfatteh, 2019. "Oil prices, US exchange rates, and stock market: evidence from Jordan as a net oil importer," MPRA Paper 94570, University Library of Munich, Germany.
  159. Antoniades, I.P. & Brandi, Giuseppe & Magafas, L. & Di Matteo, T., 2021. "The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
  160. Mariusz Tarnopolski, 2017. "Modeling the price of Bitcoin with geometric fractional Brownian motion: a Monte Carlo approach," Papers 1707.03746, arXiv.org, revised Aug 2017.
  161. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
  162. Todea, Alexandru & Pleşoianu, Anita, 2013. "The influence of foreign portfolio investment on informational efficiency: Empirical evidence from Central and Eastern European stock markets," Economic Modelling, Elsevier, vol. 33(C), pages 34-41.
  163. M. Fern'andez-Mart'inez & M. A S'anchez-Granero & Mar'ia Jos'e Mu~noz Torrecillas & Bill McKelvey, 2016. "A comparison among some Hurst exponent approaches to predict nascent bubbles in $500$ company stocks," Papers 1601.04188, arXiv.org.
  164. Ladislav Krištoufek, 2010. "Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite Sample Properties and Confidence Intervals," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 4(3), pages 315-329, November.
  165. Juan Benjamin Duarte Duarte & Katherine Julieth Sierra Suarez & Juan Manuel Mascarenas Perez-Inigo, 2014. "Evaluation Of Long-Term Memory In Colombian Stock Market By Hurst Coefficient, Evaluacion De La Memoria De Largo Plazo Del Mercado Bursatil Colombiano Mediante El Coeficiente De Hurst," Revista Internacional Administracion & Finanzas, The Institute for Business and Finance Research, vol. 7(4), pages 1-10.
  166. Dias, Rui & da Silva, Jacinto Vidigal & Dionísio, Andreia, 2019. "Financial markets of the LAC region: Does the crisis influence the financial integration?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 160-173.
  167. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
  168. Cristescu, Constantin P. & Stan, Cristina & Scarlat, Eugen I. & Minea, Teofil & Cristescu, Cristina M., 2012. "Parameter motivated mutual correlation analysis: Application to the study of currency exchange rates based on intermittency parameter and Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2623-2635.
  169. Aloui, Chaker & Shahzad, Syed Jawad Hussain & Jammazi, Rania, 2018. "Dynamic efficiency of European credit sectors: A rolling-window multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 337-349.
  170. Gurjeet Dhesi & Bilal Shakeel & Marcel Ausloos, 2021. "Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach," Annals of Operations Research, Springer, vol. 299(1), pages 1397-1410, April.
  171. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "Efficiency of Thai stock markets: Detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 204-209.
  172. Jaksic, Vesna & Mandic, Danilo P. & Karoumi, Raid & Basu, Bidroha & Pakrashi, Vikram, 2016. "Estimation of nonlinearities from pseudodynamic and dynamic responses of bridge structures using the Delay Vector Variance method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 100-120.
  173. Karen Balladares & José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Angel Sánchez-Granero, 2021. "Statistical Arbitrage in Emerging Markets: A Global Test of Efficiency," Mathematics, MDPI, vol. 9(2), pages 1-20, January.
  174. Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei Chen & Wei Zhang & Wei-Xing Zhou, 2014. "Stylized facts of price gaps in limit order books: Evidence from Chinese stocks," Papers 1405.1247, arXiv.org.
  175. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
  176. Siokis, Fotios M., 2018. "Credit market Jitters in the course of the financial crisis: A permutation entropy approach in measuring informational efficiency in financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 266-275.
  177. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
  178. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
  179. Paulo Ferreira & Marcus Fernandes da Silva & Idaraí Santos de Santana, 2019. "Detrended Correlation Coefficients Between Exchange Rate (in Dollars) and Stock Markets in the World’s Largest Economies," Economies, MDPI, vol. 7(1), pages 1-11, February.
  180. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2015. "Time-dependent scaling patterns in high frequency financial data," Papers 1508.07428, arXiv.org, revised Dec 2015.
  181. Ferreira, Paulo, 2018. "Efficiency or speculation? A time-varying analysis of European sovereign debt," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1295-1308.
  182. Mahjoub, Amal & Attia, Najmeddine, 2022. "A relative vectorial multifractal formalism," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  183. Anton Golub & Gregor Chliamovitch & Alexandre Dupuis & Bastien Chopard, 2014. "Multi-scale Representation of High Frequency Market Liquidity," Papers 1402.2198, arXiv.org.
  184. Fonseca, Carla L.G. & de Resende, Charlene C. & Fernandes, Danilo H.C. & Cardoso, Rodrigo T.N. & de Magalhães, A.R. Bosco, 2021. "Is the choice of the candlestick dimension relevant in econophysics?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
  185. Pan, Zhiyuan & Wang, Yudong & Liu, Li, 2016. "The relationships between petroleum and stock returns: An asymmetric dynamic equi-correlation approach," Energy Economics, Elsevier, vol. 56(C), pages 453-463.
  186. A. Sensoy & Benjamin M. Tabak, 2013. "How much random does European Union walk? A time-varying long memory analysis," Working Papers Series 342, Central Bank of Brazil, Research Department.
  187. Wesselhöfft, Niels & Härdle, Wolfgang Karl, 2019. "Estimating low sampling frequency risk measure by high-frequency data," IRTG 1792 Discussion Papers 2019-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  188. Ning, Ye & Wang, Yiming & Su, Chi-wei, 2017. "How did China’s foreign exchange reform affect the efficiency of foreign exchange market?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 219-226.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.