IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v84y2022ics1057521922003532.html
   My bibliography  Save this article

Measuring informational efficiency of the European carbon market — A quantitative evaluation of higher order dependence

Author

Listed:
  • Sattarhoff, Cristina
  • Gronwald, Marc

Abstract

This paper introduces a new method for measuring nonlinear predictability in financial price changes: the so-called intermittency coefficient, a parameter of the multifractal random walk model by Bacry et al. (2001). As the intermittency coefficient can quantify the degree of nonlinear deviation from a random walk, we employ its estimates from financial data as a proxy for the loss of financial market efficiency. In addition, we propose a new statistical test of the random walk hypothesis. In an empirical application using data from the largest currently existing market for tradable pollution permits, the European Union Emissions Trading Scheme (EU ETS), we show that the degree of efficiency of this market remains largely unchanged over the period of observation 2008–2019. This suggests that the market has reached a mature state: informational efficiency in Phase III remains at a level comparable to Phase II. What is more, the EU ETS is found to be more efficient than the US stock market. This result, surprising as such, is largely attributable to the lower exposure to global economic shocks of the EU ETS.

Suggested Citation

  • Sattarhoff, Cristina & Gronwald, Marc, 2022. "Measuring informational efficiency of the European carbon market — A quantitative evaluation of higher order dependence," International Review of Financial Analysis, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:finana:v:84:y:2022:i:c:s1057521922003532
    DOI: 10.1016/j.irfa.2022.102403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521922003532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2022.102403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Perthuis, Christian & Trotignon, Raphael, 2014. "Governance of CO2 markets: Lessons from the EU ETS," Energy Policy, Elsevier, vol. 75(C), pages 100-106.
    2. Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
    3. Ottmar Edenhofer, 2014. "Reforming emissions trading," Nature Climate Change, Nature, vol. 4(8), pages 663-664, August.
    4. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2008. "Liquidity and market efficiency," Journal of Financial Economics, Elsevier, vol. 87(2), pages 249-268, February.
    5. Fernando Palao & Angel Pardo, 2018. "Do Price Barriers Exist in the European Carbon Market?," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 19(1), pages 111-124, January.
    6. Yun-Jung Lee & Neung-Woo Kim & Ki-Hong Choi & Seong-Min Yoon, 2020. "Analysis of the Informational Efficiency of the EU Carbon Emission Trading Market: Asymmetric MF-DFA Approach," Energies, MDPI, vol. 13(9), pages 1-14, May.
    7. Corgnet, Brice & DeSantis, Mark & Porter, David, 2020. "The distribution of information and the price efficiency of markets," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).
    8. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    9. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    10. Reyer Gerlagh & Roweno J. R. K. Heijmans & Knut Einar Rosendahl, 2020. "COVID-19 Tests the Market Stability Reserve," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 855-865, August.
    11. Hintermann, Beat, 2010. "Allowance price drivers in the first phase of the EU ETS," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 43-56, January.
    12. Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," Energy Economics, Elsevier, vol. 40(C), pages 222-232.
    13. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    14. Plott, Charles R & Sunder, Shyam, 1988. "Rational Expectations and the Aggregation of Diverse Information in Laboratory Security Markets," Econometrica, Econometric Society, vol. 56(5), pages 1085-1118, September.
    15. Jorge Perez-Rodriguez & Salvador Torra & Julian Andrada-Felix, 2005. "Are Spanish Ibex35 stock future index returns forecasted with non-linear models?," Applied Financial Economics, Taylor & Francis Journals, vol. 15(14), pages 963-975.
    16. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    17. Rannou, Yves & Barneto, Pascal, 2016. "Futures trading with information asymmetry and OTC predominance: Another look at the volume/volatility relations in the European carbon markets," Energy Economics, Elsevier, vol. 53(C), pages 159-174.
    18. Jiménez-Rodríguez, Rebeca, 2019. "What happens to the relationship between EU allowances prices and stock market indices in Europe?," Energy Economics, Elsevier, vol. 81(C), pages 13-24.
    19. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    20. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    21. David, S.A. & Inácio, C.M.C. & Quintino, D.D. & Machado, J.A.T., 2020. "Measuring the Brazilian ethanol and gasoline market efficiency using DFA-Hurst and fractal dimension," Energy Economics, Elsevier, vol. 85(C).
    22. Kristoufek, Ladislav, 2019. "Are the crude oil markets really becoming more efficient over time? Some new evidence," Energy Economics, Elsevier, vol. 82(C), pages 253-263.
    23. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    24. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
    25. Deeney, Peter & Cummins, Mark & Dowling, Michael & Smeaton, Alan F., 2016. "Influences from the European Parliament on EU emissions prices," Energy Policy, Elsevier, vol. 88(C), pages 561-572.
    26. Duan, Kun & Li, Zeming & Urquhart, Andrew & Ye, Jinqiang, 2021. "Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach," International Review of Financial Analysis, Elsevier, vol. 75(C).
    27. Friedrich, Marina & Mauer, Eva-Maria & Pahle, Michael & Tietjen, Oliver, 2020. "From fundamentals to financial assets: the evolution of understanding price formation in the EU ETS," EconStor Preprints 196150, ZBW - Leibniz Information Centre for Economics, revised 2020.
    28. Kian-Ping Lim & Chee-Wooi Hooy, 2013. "Non-Linear Predictability In G7 Stock Index Returns," Manchester School, University of Manchester, vol. 81(4), pages 620-637, July.
    29. Lim, Kian-Ping & Brooks, Robert D., 2010. "Why Do Emerging Stock Markets Experience More Persistent Price Deviations From A Random Walk Over Time? A Country-Level Analysis," Macroeconomic Dynamics, Cambridge University Press, vol. 14(S1), pages 3-41, May.
    30. Kim, Jae H. & Shamsuddin, Abul & Lim, Kian-Ping, 2011. "Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 868-879.
    31. Bredin, Don & Hyde, Stuart & Muckley, Cal, 2014. "A microstructure analysis of the carbon finance market," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 222-234.
    32. Koch, Nicolas & Fuss, Sabine & Grosjean, Godefroy & Edenhofer, Ottmar, 2014. "Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything?—New evidence," Energy Policy, Elsevier, vol. 73(C), pages 676-685.
    33. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    34. Tiwari, Aviral Kumar & Kumar, Satish & Pathak, Rajesh & Roubaud, David, 2019. "Testing the oil price efficiency using various measures of long-range dependence," Energy Economics, Elsevier, vol. 84(C).
    35. Paolella, Marc S. & Taschini, Luca, 2008. "An econometric analysis of emission allowance prices," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2022-2032, October.
    36. Charles, Amélie & Darné, Olivier & Fouilloux, Jessica, 2011. "Testing the martingale difference hypothesis in CO2 emission allowances," Economic Modelling, Elsevier, vol. 28(1-2), pages 27-35, January.
    37. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).
    38. repec:dau:papers:123456789/13539 is not listed on IDEAS
    39. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    40. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    41. Palao, Fernando & Pardo, Angel, 2012. "Assessing price clustering in European Carbon Markets," Applied Energy, Elsevier, vol. 92(C), pages 51-56.
    42. Palao, Fernando & Pardo, Ángel, 2014. "What makes carbon traders cluster their orders?," Energy Economics, Elsevier, vol. 43(C), pages 158-165.
    43. Ibarra-Valdez, C. & Alvarez, J. & Alvarez-Ramirez, J., 2016. "Randomness confidence bands of fractal scaling exponents for financial price returns," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 119-124.
    44. Emmanuel Bacry & Alexey Kozhemyak & J.-F. Muzy, 2008. "Continuous cascade models for asset returns," Post-Print hal-00604449, HAL.
    45. Alfarano, Simone & Lux, Thomas, 2007. "A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory," Macroeconomic Dynamics, Cambridge University Press, vol. 11(S1), pages 80-101, November.
    46. Wang, Yudong & Liu, Li & Gu, Rongbao, 2009. "Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 271-276, December.
    47. Bacry, E. & Kozhemyak, A. & Muzy, Jean-Francois, 2008. "Continuous cascade models for asset returns," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 156-199, January.
    48. Chevallier, Julien, 2013. "Variance risk-premia in CO2 markets," Economic Modelling, Elsevier, vol. 31(C), pages 598-605.
    49. repec:dau:papers:123456789/10174 is not listed on IDEAS
    50. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    51. Perino, Grischa & Willner, Maximilian, 2016. "Procrastinating reform: The impact of the market stability reserve on the EU ETS," Journal of Environmental Economics and Management, Elsevier, vol. 80(C), pages 37-52.
    52. Zhuang, Xiaoyang & Wei, Yu & Zhang, Bangzheng, 2014. "Multifractal detrended cross-correlation analysis of carbon and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 113-125.
    53. Ekkehart Boehmer & Juan (Julie) Wu, 2013. "Short Selling and the Price Discovery Process," The Review of Financial Studies, Society for Financial Studies, vol. 26(2), pages 287-322.
    54. Daskalakis, George, 2013. "On the efficiency of the European carbon market: New evidence from Phase II," Energy Policy, Elsevier, vol. 54(C), pages 369-375.
    55. repec:dau:papers:123456789/11713 is not listed on IDEAS
    56. Dominik M. Rösch & Avanidhar Subrahmanyam & Mathijs A. van Dijk, 2017. "The Dynamics of Market Efficiency," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1151-1187.
    57. Beat Hintermann & Sonja Peterson & Wilfried Rickels, 2016. "Price and Market Behavior in Phase II of the EU ETS: A Review of the Literature," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 108-128.
    58. Batten, Jonathan A. & Maddox, Grace E. & Young, Martin R., 2021. "Does weather, or energy prices, affect carbon prices?," Energy Economics, Elsevier, vol. 96(C).
    59. Jochen Heberle & Cristina Sattarhoff, 2017. "A Fast Algorithm for the Computation of HAC Covariance Matrix Estimators," Econometrics, MDPI, vol. 5(1), pages 1-16, January.
    60. Khediri, Karim Ben & Charfeddine, Lanouar, 2015. "Evolving efficiency of spot and futures energy markets: A rolling sample approach," Journal of Behavioral and Experimental Finance, Elsevier, vol. 6(C), pages 67-79.
    61. Ekkehart Boehmer & Eric K. Kelley, 2009. "Institutional Investors and the Informational Efficiency of Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3563-3594, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    2. Li, Yiying & Ren, Xiaohang & Taghizadeh-Hesary, Farhad, 2023. "Vulnerability of sustainable markets to fossil energy shocks," Resources Policy, Elsevier, vol. 85(PB).
    3. Wang, Jiqiang & Dai, Peng-Fei & Zhang, Xuewen, 2024. "Untangling the entanglement of US monetary policy uncertainty and European natural gas and carbon prices," Energy Economics, Elsevier, vol. 133(C).
    4. Li, Jia & Yang, Jianfei, 2024. "Financial shocks, investor sentiment, and heterogeneous firms’ output volatility: Evidence from credit asset securitization markets," Finance Research Letters, Elsevier, vol. 60(C).
    5. Feng, Huchen & Hu, Yu-Jie & Li, Chengjiang & Wang, Honglei, 2023. "Rolling horizon optimisation strategy and initial carbon allowance allocation model to reduce carbon emissions in the power industry: Case of China," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Sattarhoff & Marc Gronwald, 2018. "How to Measure Financial Market Efficiency? A Multifractality-Based Quantitative Approach with an Application to the European Carbon Market," CESifo Working Paper Series 7102, CESifo.
    2. Friedrich, Marina & Mauer, Eva-Maria & Pahle, Michael & Tietjen, Oliver, 2020. "From fundamentals to financial assets: the evolution of understanding price formation in the EU ETS," EconStor Preprints 196150, ZBW - Leibniz Information Centre for Economics, revised 2020.
    3. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    4. Federico Galán-Valdivieso & Elena Villar-Rubio & María-Dolores Huete-Morales, 2018. "The erratic behaviour of the EU ETS on the path towards consolidation and price stability," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(5), pages 689-706, October.
    5. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    6. Huang, Wenyang & Wang, Huiwen & Wei, Yigang, 2023. "Identifying the determinants of European carbon allowances prices: A novel robust partial least squares method for open-high-low-close data," International Review of Financial Analysis, Elsevier, vol. 90(C).
    7. Marina Friedrich & S'ebastien Fries & Michael Pahle & Ottmar Edenhofer, 2019. "Understanding the explosive trend in EU ETS prices -- fundamentals or speculation?," Papers 1906.10572, arXiv.org, revised Mar 2020.
    8. Cretí, Anna & Joëts, Marc, 2017. "Multiple bubbles in the European Union Emission Trading Scheme," Energy Policy, Elsevier, vol. 107(C), pages 119-130.
    9. Medina, Vicente & Pardo, Ángel & Pascual, Roberto, 2014. "The timeline of trading frictions in the European carbon market," Energy Economics, Elsevier, vol. 42(C), pages 378-394.
    10. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    11. Bai, Yiyi & Okullo, Samuel J., 2023. "Drivers and pass-through of the EU ETS price: Evidence from the power sector," Energy Economics, Elsevier, vol. 123(C).
    12. Todea, Alexandru & Pleşoianu, Anita, 2013. "The influence of foreign portfolio investment on informational efficiency: Empirical evidence from Central and Eastern European stock markets," Economic Modelling, Elsevier, vol. 33(C), pages 34-41.
    13. Charles, Amélie & Darné, Olivier & Fouilloux, Jessica, 2011. "Testing the martingale difference hypothesis in CO2 emission allowances," Economic Modelling, Elsevier, vol. 28(1-2), pages 27-35, January.
    14. Balietti, Anca Claudia, 2016. "Trader types and volatility of emission allowance prices. Evidence from EU ETS Phase I," Energy Policy, Elsevier, vol. 98(C), pages 607-620.
    15. Amélie Charles & Olivier Darné & Jessica Fouilloux, 2010. "Testing the Martingale Difference Hypothesis in the EU ETS Markets for the CO2 Emission Allowances: Evidence from Phase I and Phase II," Post-Print hal-00797491, HAL.
    16. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
    17. Katusiime, Lorna & Shamsuddin, Abul & Agbola, Frank W., 2015. "Foreign exchange market efficiency and profitability of trading rules: Evidence from a developing country," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 315-332.
    18. Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.
    19. Anouk Faure & Marc Baudry, 2021. "Technological Progress and Carbon Price Formation: an Analysis of EU-ETS Plants," Working Papers hal-04159764, HAL.
    20. Lovcha, Yuliya & Perez-Laborda, Alejandro & Sikora, Iryna, 2022. "The determinants of CO2 prices in the EU emission trading system," Applied Energy, Elsevier, vol. 305(C).

    More about this item

    Keywords

    Weak-form market efficiency; Degree of market efficiency; Multifractality; Multifractal random walk; European union emissions trading scheme;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:84:y:2022:i:c:s1057521922003532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.