IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03735497.html
   My bibliography  Save this paper

Foreign Exchange Multivariate Multifractal Analysis

Author

Listed:
  • Patrice Abry

    (Phys-ENS - Laboratoire de Physique de l'ENS Lyon - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Yannick Malevergne

    (PRISM Sorbonne - Pôle de recherche interdisciplinaire en sciences du management - UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Herwig Wendt

    (Phys-ENS - Laboratoire de Physique de l'ENS Lyon - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Stéphane Jaffard

    (LAMA - Laboratoire d'Analyse et de Mathématiques Appliquées - UPEM - Université Paris-Est Marne-la-Vallée - BEZOUT - Fédération de Recherche Bézout - CNRS - Centre National de la Recherche Scientifique - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12 - CNRS - Centre National de la Recherche Scientifique)

  • Marc Senneret
  • Laurent Jaffrès

Abstract

After Mandelbrot's seminal work, scale-free and multifractal temporal dynamics have been recognized as classical stylized facts for financial time series and massively documented. Multifractal analysis in finance has however mainly remained univariate (one time series at a time) when multivariate (or basket) properties are critical for financial applications. This is mostly due to a lack of theoretical foundations and practical tools for multivariate multifractal analysis. Expanding on a theoretically-grounded recently proposed multivariate multifractal formalism, the present work performs an original multivariate analysis for a basket of six Foreign Exchange rate time series. Beyond confirming multifractality for each component independently, the definition of cross-multifractalities amongst components is introduced, assessing cross-dependencies in temporal dynamics not already accounted for by cross-correlations. The key practical outcome is to show that, essentially, one same multifractal time governs jointly the temporal dynamics of all the Foreign Exchange time series studied here.

Suggested Citation

  • Patrice Abry & Yannick Malevergne & Herwig Wendt & Stéphane Jaffard & Marc Senneret & Laurent Jaffrès, 2022. "Foreign Exchange Multivariate Multifractal Analysis," Post-Print hal-03735497, HAL.
  • Handle: RePEc:hal:journl:hal-03735497
    Note: View the original document on HAL open archive server: https://hal.science/hal-03735497v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03735497v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lux, Thomas, 2008. "The Markov-Switching Multifractal Model of Asset Returns: GMM Estimation and Linear Forecasting of Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 194-210, April.
    2. A. Arnéodo & J.-F. Muzy & D. Sornette, 1998. "”Direct” causal cascade in the stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 2(2), pages 277-282, March.
    3. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    4. Leonarduzzi, R. & Wendt, H. & Abry, P. & Jaffard, S. & Melot, C. & Roux, S.G. & Torres, M.E., 2016. "p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 319-339.
    5. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    7. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    8. Bacry, E. & Kozhemyak, A. & Muzy, Jean-Francois, 2008. "Continuous cascade models for asset returns," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 156-199, January.
    9. Laurent E. Calvet & Adlai Fisher, 2008. "Multifractal Volatility: Theory, Forecasting and Pricing," Post-Print hal-00671877, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrice Abry & Yannick Malevergne & Herwig Wendt & Marc Senneret & Laurent Jaffrès & Blaise Liaustrat, 2019. "Shuffling for understanding multifractality, application to asset price time series," Post-Print hal-02361738, HAL.
    2. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    3. Lee, Hojin & Song, Jae Wook & Chang, Woojin, 2016. "Multifractal Value at Risk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 113-122.
    4. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    5. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    6. Krenar Avdulaj & Ladislav Kristoufek, 2020. "On Tail Dependence and Multifractality," Mathematics, MDPI, vol. 8(10), pages 1-13, October.
    7. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    8. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    9. Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015. "What is beneath the surface? Option pricing with multifrequency latent states," Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
    10. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    11. M. Rypdal & O. L{o}vsletten, 2011. "Multifractal modeling of short-term interest rates," Papers 1111.5265, arXiv.org.
    12. Nasr, Adnen Ben & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2016. "Forecasting the volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. regime switching," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 559-571.
    13. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    14. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2016. "Anomalous volatility scaling in high frequency financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 434-445.
    15. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    16. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    17. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    18. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Giuseppe Brandi & T. Di Matteo, 2020. "On the statistics of scaling exponents and the Multiscaling Value at Risk," Papers 2002.04164, arXiv.org, revised Mar 2021.
    20. Grahovac, Danijel & Leonenko, Nikolai N., 2014. "Detecting multifractal stochastic processes under heavy-tailed effects," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 78-89.

    More about this item

    Keywords

    multivariate multifractal analysis; wavelet leaders; Financial times series; Foreign exchange; basket properties;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03735497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.