Distinguishing between short and long range dependence: Finite sample properties of rescaled range and modified rescaled range
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
- Chin, Wencheong, 2008. "Spurious long-range dependence: evidence from Malaysian equity markets," MPRA Paper 7914, University Library of Munich, Germany.
- Czarnecki, Łukasz & Grech, Dariusz & Pamuła, Grzegorz, 2008. "Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6801-6811.
- Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo & Fernandez-Anaya, Guillermo, 2008. "Time-varying Hurst exponent for US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6159-6169.
- Lux, Thomas, 2007. "Applications of statistical physics in finance and economics," Economics Working Papers 2007-05, Christian-Albrechts-University of Kiel, Department of Economics.
- Lo, Andrew W, 1991.
"Long-Term Memory in Stock Market Prices,"
Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
- Lo, Andrew W. (Andrew Wen-Chuan), 1989. "Long-term memory in stock market prices," Working papers 3014-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "RSSTATISTIC: RATS procedure to compute R/S Statistic (classical or Lo's modified)," Statistical Software Components RTS00191, Boston College Department of Economics.
- Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005.
"Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development,"
Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
- T. Di Matteo & T. Aste & M. M. Dacorogna, 2004. "Long term memories of developed and emerging markets: using the scaling analysis to characterize their stage of development," Papers cond-mat/0403681, arXiv.org.
- T. Di Matteo & T. Aste & Michel M. Dacorogna, 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Econometrics 0503004, University Library of Munich, Germany.
- Lillo Fabrizio & Farmer J. Doyne, 2004.
"The Long Memory of the Efficient Market,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
- Fabrizio Lillo & J. Doyne Farmer, 2003. "The long memory of the efficient market," Papers cond-mat/0311053, arXiv.org, revised Jul 2004.
- Paul Eitelman & Justin Vitanza, 2008. "A non-random walk revisited: short- and long-term memory in asset prices," International Finance Discussion Papers 956, Board of Governors of the Federal Reserve System (U.S.).
- T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
- Couillard, Michel & Davison, Matt, 2005. "A comment on measuring the Hurst exponent of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 404-418.
- Matos, José A.O. & Gama, Sílvio M.A. & Ruskin, Heather J. & Sharkasi, Adel Al & Crane, Martin, 2008. "Time and scale Hurst exponent analysis for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3910-3915.
- Weron, Rafał, 2002.
"Estimating long-range dependence: finite sample properties and confidence intervals,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
- Rafal Weron, 2001. "Estimating long range dependence: finite sample properties and confidence intervals," HSC Research Reports HSC/01/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
- Lennart Berg & Johan Lyhagen, 1998.
"Short and long-run dependence in Swedish stock returns,"
Applied Financial Economics, Taylor & Francis Journals, vol. 8(4), pages 435-443.
- Berg, Lennart & Lyhagen, Johan, 1996. "Short and Long Run Dependence in Swedish Stock Returns," Working Paper Series 1996:19, Uppsala University, Department of Economics.
- Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
- Andreas S. Andreou & George A. Zombanakis, 2006. "Computational Intelligence in Exchange-Rate Forecasting," Working Papers 49, Bank of Greece.
- John Barkoulas & Christopher Baum & Nickolaos Travlos, 2000.
"Long memory in the Greek stock market,"
Applied Financial Economics, Taylor & Francis Journals, vol. 10(2), pages 177-184.
- John T. Barkoulas & Christopher F. Baum & Nickolaos Travlos, 1996. "Long Memory in the Greek Stock Market," Boston College Working Papers in Economics 356., Boston College Department of Economics.
- Bera, Anil K. & Jarque, Carlos M., 1981. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals : Monte Carlo Evidence," Economics Letters, Elsevier, vol. 7(4), pages 313-318.
- Lisa Borland & Jean-Philippe Bouchaud & Jean-Francois Muzy & Gilles Zumbach, 2005. "The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond," Science & Finance (CFM) working paper archive 500061, Science & Finance, Capital Fund Management.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gomes, Luís M. P. & Soares, Vasco J. S. & Gama, Sílvio M. A. & Matos, José A. O., 2018. "Long-term memory in Euronext stock indexes returns: an econophysics approach," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(4), pages 862-881, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kristoufek, Ladislav, 2009. "R/S analysis and DFA: finite sample properties and confidence intervals," MPRA Paper 16446, University Library of Munich, Germany.
- Kristoufek, Ladislav, 2009. "Procesy s dlouhou pamětí a jejich vývoj ve výnosech indexu PX v letech 1999 – 2009 [Long-term memory and its evolution in returns of PX between 1999 and 2009]," MPRA Paper 16435, University Library of Munich, Germany.
- Barunik, Jozef & Kristoufek, Ladislav, 2010.
"On Hurst exponent estimation under heavy-tailed distributions,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
- Jozef Barunik & Ladislav Kristoufek, 2012. "On Hurst exponent estimation under heavy-tailed distributions," Papers 1201.4786, arXiv.org.
- Ladislav Krištoufek, 2010. "Dlouhá paměť a její vývoj ve výnosech burzovního indexu PX v letech 1997-2009 [Long-Term Memory and Its Evolution in Returns of Stock Index PX Between 1997 and 2009]," Politická ekonomie, Prague University of Economics and Business, vol. 2010(4), pages 471-487.
- Kristoufek, Ladislav, 2012.
"How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.
- Ladislav Kristoufek, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Papers 1201.3511, arXiv.org.
- Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
- Lin, Xiaoqiang & Fei, Fangyu, 2013. "Long memory revisit in Chinese stock markets: Based on GARCH-class models and multiscale analysis," Economic Modelling, Elsevier, vol. 31(C), pages 265-275.
- Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
- Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
- Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
- Ladislav Kristoufek & Miloslav Vosvrda, 2014.
"Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
- Ladislav Kristoufek & Miloslav Vosvrda, 2013. "Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy," Papers 1307.3060, arXiv.org, revised May 2014.
- Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy," FinMaP-Working Papers 18, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Kristoufek, Ladislav, 2010. "On spurious anti-persistence in the US stock indices," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 68-78.
- Auer, Benjamin R., 2016. "On time-varying predictability of emerging stock market returns," Emerging Markets Review, Elsevier, vol. 27(C), pages 1-13.
- Miguel Ángel Sánchez & Juan E Trinidad & José García & Manuel Fernández, 2015. "The Effect of the Underlying Distribution in Hurst Exponent Estimation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017.
"Long Memory and Data Frequency in Financial Markets,"
CESifo Working Paper Series
6396, CESifo.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," Discussion Papers of DIW Berlin 1647, DIW Berlin, German Institute for Economic Research.
- Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
- A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
- Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
- Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX," Energy Economics, Elsevier, vol. 59(C), pages 167-178.
- Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.
More about this item
Keywords
rescaled range; modified rescaled range; Hurst exponent; long-range dependence; confidence intervals;All these keywords.
JEL classification:
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
- C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2009-08-02 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:16424. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.