IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v503y2018icp221-230.html
   My bibliography  Save this article

A new measurement of financial time irreversibility based on information measures method

Author

Listed:
  • Wang, Yuanyuan
  • Shang, Pengjian

Abstract

In this paper, we propose a new measurement of time irreversibility based on information measures method to analyze the financial stock markets. In order to examine the effectiveness of this method, we employ it into ARFIMA models. Applying the new method to quantifying time irreversibility of 33 financial indices evolving over the period 2002–2016, we conclude that the stock daily prices of the companies are indeed time irreversible and the degree of irreversibility varies with time for each company. According to the values of irreversibility, we could rank the companies. Also we obtain that the values of annualized irreversibility may have little effect on the coefficient of variation. Moreover, in order to find patterns arising among different periods, we use the principal component analysis (PCA) and hierarchical clustering, the results obtained by these two standard techniques in data mining are in agreement.

Suggested Citation

  • Wang, Yuanyuan & Shang, Pengjian, 2018. "A new measurement of financial time irreversibility based on information measures method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 221-230.
  • Handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:221-230
    DOI: 10.1016/j.physa.2018.02.197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302826
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    2. Fong, Wai Mun, 2003. "Time reversibility tests of volume-volatility dynamics for stock returns," Economics Letters, Elsevier, vol. 81(1), pages 39-45, October.
    3. Chen, Yi-Ting & Chou, Ray Y. & Kuan, Chung-Ming, 2000. "Testing time reversibility without moment restrictions," Journal of Econometrics, Elsevier, vol. 95(1), pages 199-218, March.
    4. Ramsey, James B & Rothman, Philip, 1996. "Time Irreversibility and Business Cycle Asymmetry," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(1), pages 1-21, February.
    5. Rothman, P, 1992. "The Comparative Power of the TR Test against Simple Threshold Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 187-195, Suppl. De.
    6. Gilles Zumbach, 2009. "Time reversal invariance in finance," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 505-515.
    7. Yang, Albert C.-C & Peng, C.-K & Yien, H.-W & Goldberger, Ary L, 2003. "Information categorization approach to literary authorship disputes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(3), pages 473-483.
    8. Eom, Cheoljun & Choi, Sunghoon & Oh, Gabjin & Jung, Woo-Sung, 2008. "Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4630-4636.
    9. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    10. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Xia, Jianan & Shang, Pengjian & Wang, Jing & Shi, Wenbin, 2014. "Classifying of financial time series based on multiscale entropy and multiscale time irreversibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 151-158.
    13. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shijian & Shang, Pengjian, 2020. "Financial time series analysis using the relation between MPE and MWPE," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhenyu & Shang, Pengjian & Xiong, Hui, 2018. "An improvement of the measurement of time series irreversibility with visibility graph approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 370-378.
    2. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    3. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    4. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    5. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    6. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    7. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
    8. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    9. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Working Papers hal-03230167, HAL.
    10. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.
    11. Siew Ann Cheong, 2013. "Econophysics: An Experimental Course for Advanced Undergraduates in the Nanyang Technological University," IIM Kozhikode Society & Management Review, , vol. 2(2), pages 79-99, July.
    12. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    13. Jessica Morales Herrera & Ra'ul Salgado-Garc'ia, 2023. "Trend patterns statistics for assessing irreversibility in cryptocurrencies: time-asymmetry versus inefficiency," Papers 2307.08612, arXiv.org.
    14. Horta, Paulo & Lagoa, Sérgio & Martins, Luís, 2014. "The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 140-153.
    15. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    16. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    17. McCausland, William J., 2007. "Time reversibility of stationary regular finite-state Markov chains," Journal of Econometrics, Elsevier, vol. 136(1), pages 303-318, January.
    18. Gilles Zumbach, 2007. "Time reversal invariance in finance," Papers 0708.4022, arXiv.org.
    19. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    20. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:221-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.