IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v447y2016icp434-445.html
   My bibliography  Save this article

Anomalous volatility scaling in high frequency financial data

Author

Listed:
  • Nava, Noemi
  • Di Matteo, T.
  • Aste, Tomaso

Abstract

Volatility of intra-day stock market indices computed at various time horizons exhibits a scaling behaviour that differs from what would be expected from fractional Brownian motion (fBm). We investigate this anomalous scaling by using empirical mode decomposition (EMD), a method which separates time series into a set of cyclical components at different time-scales. By applying the EMD to fBm, we retrieve a scaling law that relates the variance of the components to a power law of the oscillating period. In contrast, when analysing 22 different stock market indices, we observe deviations from the fBm and Brownian motion scaling behaviour. We discuss and quantify these deviations, associating them to the characteristics of financial markets, with larger deviations corresponding to less developed markets.

Suggested Citation

  • Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2016. "Anomalous volatility scaling in high frequency financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 434-445.
  • Handle: RePEc:eee:phsmap:v:447:y:2016:i:c:p:434-445
    DOI: 10.1016/j.physa.2015.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115010493
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
    3. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    4. Benoit Mandelbrot & Howard M. Taylor, 1967. "On the Distribution of Stock Price Differences," Operations Research, INFORMS, vol. 15(6), pages 1057-1062, December.
    5. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    6. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    7. Wu, Ming-Chya, 2007. "Phase correlation of foreign exchange time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 633-642.
    8. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    9. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    10. Qian, Xi-Yuan & Gu, Gao-Feng & Zhou, Wei-Xing, 2011. "Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4388-4395.
    11. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    12. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    13. J. B. Glattfelder & A. Dupuis & R. B. Olsen, 2010. "Patterns in high-frequency FX data: discovery of 12 empirical scaling laws," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 599-614.
    14. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    15. Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon, 2001. "Scaling properties of foreign exchange volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(1), pages 249-266.
    16. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    17. M. Bartolozzi & C. Mellen & T. Di Matteo & T. Aste, 2007. "Multi-scale correlations in different futures markets," Papers 0707.3321, arXiv.org, revised Aug 2007.
    18. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    19. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    20. M. Bartolozzi & C. Mellen & T. Di Matteo & T. Aste, 2007. "Multi-scale correlations in different futures markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(2), pages 207-220, July.
    21. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    22. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
    23. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    24. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    25. Guhathakurta, Kousik & Mukherjee, Indranil & Chowdhury, A. Roy, 2008. "Empirical mode decomposition analysis of two different financial time series and their comparison," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1214-1227.
    26. Riccardo Junior Buonocore & Tomaso Aste & Tiziana Di Matteo, 2015. "Measuring multiscaling in financial time-series," Papers 1509.05471, arXiv.org, revised Sep 2015.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noemi Nava & T. Di Matteo & Tomaso Aste, 2015. "Anomalous volatility scaling in high frequency financial data," Papers 1503.08465, arXiv.org, revised Dec 2015.
    2. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    3. Krenar Avdulaj & Ladislav Kristoufek, 2020. "On Tail Dependence and Multifractality," Mathematics, MDPI, vol. 8(10), pages 1-13, October.
    4. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2015. "Time-dependent scaling patterns in high frequency financial data," Papers 1508.07428, arXiv.org, revised Dec 2015.
    5. Antoniades, I.P. & Brandi, Giuseppe & Magafas, L. & Di Matteo, T., 2021. "The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    6. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    7. Morales, Raffaello & Di Matteo, T. & Aste, Tomaso, 2013. "Non-stationary multifractality in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6470-6483.
    8. Ioannis P. Antoniades & Giuseppe Brandi & L. G. Magafas & T. Di Matteo, 2020. "The use of scaling properties to detect relevant changes in financial time series: a new visual warning tool," Papers 2010.08890, arXiv.org, revised Dec 2020.
    9. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    10. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    11. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    12. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    13. Giuseppe Brandi & T. Di Matteo, 2022. "Multiscaling and rough volatility: an empirical investigation," Papers 2201.10466, arXiv.org.
    14. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    15. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
    16. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    17. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    18. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    19. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    20. Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico, 2019. "The stylized facts of prediction markets: Analysis of price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 159-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:447:y:2016:i:c:p:434-445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.