IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v25y2018icp280-284.html
   My bibliography  Save this article

Time-varying long-term memory in Bitcoin market

Author

Listed:
  • Jiang, Yonghong
  • Nie, He
  • Ruan, Weihua

Abstract

This study attempts to investigate the time-varying long-term memory in the Bitcoin market through a rolling window approach and by employing a new efficiency index (Sensoy and Hacihasanoglu, 2014). The daily dataset for the period from 2010 to 2017 is utilized, and some interesting findings emerge that: (i) all of the generalized Hurst exponents in the Bitcoin market are above 0.5; (ii) long-term memory exists in the Bitcoin market; (iii) high degree of inefficiency ratio; (iv) the Bitcoin market does not become more efficient over time; and (v) rolling window approach can help to obtain more reliable results. Some implications for investors and policymakers are concluded.

Suggested Citation

  • Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
  • Handle: RePEc:eee:finlet:v:25:y:2018:i:c:p:280-284
    DOI: 10.1016/j.frl.2017.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612317306682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2017.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cajueiro, Daniel O. & Tabak, Benjamin M., 2008. "Testing for long-range dependence in world stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 918-927.
    2. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    3. Jiang, Yonghong & Nie, He & Monginsidi, Joe Yohanes, 2017. "Co-movement of ASEAN stock markets: New evidence from wavelet and VMD-based copula tests," Economic Modelling, Elsevier, vol. 64(C), pages 384-398.
    4. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    5. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    6. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    7. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    8. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    9. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    10. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    11. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    12. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    13. Kim, Thomas, 2017. "On the transaction cost of Bitcoin," Finance Research Letters, Elsevier, vol. 23(C), pages 300-305.
    14. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    15. Sensoy, A., 2013. "Generalized Hurst exponent approach to efficiency in MENA markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5019-5026.
    16. Baur, Dirk G. & Dimpfl, Thomas & Kuck, Konstantin, 2018. "Bitcoin, gold and the US dollar – A replication and extension," Finance Research Letters, Elsevier, vol. 25(C), pages 103-110.
    17. Pilar Grau-Carles, 2005. "Tests of Long Memory: A Bootstrap Approach," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 103-113, February.
    18. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    19. Dwyer, Gerald P., 2015. "The economics of Bitcoin and similar private digital currencies," Journal of Financial Stability, Elsevier, vol. 17(C), pages 81-91.
    20. Cajueiro, Daniel O. & Tabak, Benjamin M., 2009. "Testing for long-range dependence in the Brazilian term structure of interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1559-1573.
    21. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    22. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    23. Brandvold, Morten & Molnár, Peter & Vagstad, Kristian & Andreas Valstad, Ole Christian, 2015. "Price discovery on Bitcoin exchanges," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 36(C), pages 18-35.
    24. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    25. Mehmet Balcilar & Zeynel Ozdemir, 2013. "The export-output growth nexus in Japan: a bootstrap rolling window approach," Empirical Economics, Springer, vol. 44(2), pages 639-660, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    2. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    3. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    4. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    5. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    6. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    7. A. Sensoy & Benjamin M. Tabak, 2013. "How much random does European Union walk? A time-varying long memory analysis," Working Papers Series 342, Central Bank of Brazil, Research Department.
    8. Sangram Keshari Jena & Aviral Kumar Tiwari & Buhari Doğan & Shawkat Hammoudeh, 2022. "Are the top six cryptocurrencies efficient? Evidence from time‐varying long memory," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3730-3740, July.
    9. repec:eme:jalpps:jal-02-2023-0023 is not listed on IDEAS
    10. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    11. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    12. Tiwari, Aviral Kumar & Umar, Zaghum & Alqahtani, Faisal, 2021. "Existence of long memory in crude oil and petroleum products: Generalised Hurst exponent approach," Research in International Business and Finance, Elsevier, vol. 57(C).
    13. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    14. Pengfei Wang & Wei Zhang & Xiao Li & Dehua Shen, 2019. "Trading volume and return volatility of Bitcoin market: evidence for the sequential information arrival hypothesis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 377-418, June.
    15. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    16. Parthajit Kayal & G. Balasubramanian, 2021. "Excess Volatility in Bitcoin: Extreme Value Volatility Estimation," IIM Kozhikode Society & Management Review, , vol. 10(2), pages 222-231, July.
    17. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    18. Andrei Shynkevich, 2021. "Impact of bitcoin futures on the informational efficiency of bitcoin spot market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 115-134, January.
    19. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    20. Yi, Eojin & Ahn, Kwangwon & Choi, M.Y., 2022. "Cryptocurrency: Not far from equilibrium," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    21. Zargar, Faisal Nazir & Kumar, Dilip, 2019. "Informational inefficiency of Bitcoin: A study based on high-frequency data," Research in International Business and Finance, Elsevier, vol. 47(C), pages 344-353.

    More about this item

    Keywords

    Long-term memory; Bitcoin market; Generalized Hurst exponents; Rolling window;
    All these keywords.

    JEL classification:

    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:25:y:2018:i:c:p:280-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.