IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v582y2021ics0378437121005069.html
   My bibliography  Save this article

Is the choice of the candlestick dimension relevant in econophysics?

Author

Listed:
  • Fonseca, Carla L.G.
  • de Resende, Charlene C.
  • Fernandes, Danilo H.C.
  • Cardoso, Rodrigo T.N.
  • de Magalhães, A.R. Bosco

Abstract

Despite the enormous amount of financial data stored as candlestick charts, their high and low dimensions are often neglected in econophysics research. In this contribution, stylized facts are computed for open, close, high and low price series: Power-law decay in return distribution tails, the Hurst exponent, and multifractal scaling are investigated, as well as the accuracy of a forecast model based on systems of differential equations. Two groups of stocks were chosen for the study, one belonging to a developed market and another from an emerging market. The hypothesis that the outcomes from high and low series and the ones from open and close data come from the same distribution was rejected at the 99% confidence level in the vast majority of cases analyzed. Taking high and low candlestick dimensions into account in econophysics can improve our understanding of market dynamics. It can also be useful for trading models.

Suggested Citation

  • Fonseca, Carla L.G. & de Resende, Charlene C. & Fernandes, Danilo H.C. & Cardoso, Rodrigo T.N. & de Magalhães, A.R. Bosco, 2021. "Is the choice of the candlestick dimension relevant in econophysics?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
  • Handle: RePEc:eee:phsmap:v:582:y:2021:i:c:s0378437121005069
    DOI: 10.1016/j.physa.2021.126233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121005069
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019. "The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
    2. Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
    3. Yang, Liansheng & Zhu, Yingming & Wang, Yudong, 2016. "Multifractal characterization of energy stocks in China: A multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 357-365.
    4. Dror Y Kenett & Matthias Raddant & Thomas Lux & Eshel Ben-Jacob, 2012. "Evolvement of Uniformity and Volatility in the Stressed Global Financial Village," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    5. Robert J. Shiller, 1984. "Stock Prices and Social Dynamics," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 15(2), pages 457-510.
    6. Lima, L.S. & Oliveira, S.C., 2020. "Two-dimensional stochastic dynamics as model for time evolution of the financial market," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    7. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
    8. K. Sznajd-Weron & R. Weron, 2002. "A Simple Model Of Price Formation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 115-123.
    9. Federico Botta & Helen Susannah Moat & H Eugene Stanley & Tobias Preis, 2015. "Quantifying Stock Return Distributions in Financial Markets," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-10, September.
    10. Drożdż, S. & Forczek, M. & Kwapień, J. & Oświe¸cimka, P. & Rak, R., 2007. "Stock market return distributions: From past to present," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 59-64.
    11. Dion Harmon & Marco Lagi & Marcus A M de Aguiar & David D Chinellato & Dan Braha & Irving R Epstein & Yaneer Bar-Yam, 2015. "Anticipating Economic Market Crises Using Measures of Collective Panic," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    12. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    13. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    14. L. Zunino & B. M. Tabak & D. G. Pérez & M. Garavaglia & O. A. Rosso, 2007. "Inefficiency in Latin-American market indices," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(1), pages 111-121, November.
    15. U, JuHyok & Lu, PengYu & Kim, ChungSong & Ryu, UnSok & Pak, KyongSok, 2020. "A new LSTM based reversal point prediction method using upward/downward reversal point feature sets," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    16. Heinz, Adrian & Jamaloodeen, Mohamed & Saxena, Atul & Pollacia, Lissa, 2021. "Bullish and Bearish Engulfing Japanese Candlestick patterns: A statistical analysis on the S&P 500 index," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 221-244.
    17. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    18. G. Caginalp & H. Laurent, 1998. "The predictive power of price patterns," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(3-4), pages 181-205.
    19. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    20. S. Drozdz & M. Forczek & J. Kwapien & P. Oswiecimka & R. Rak, 2007. "Stock market return distributions: from past to present," Papers 0704.0664, arXiv.org.
    21. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    22. Yarovaya, Larisa & Lau, Marco Chi Keung, 2016. "Stock market comovements around the Global Financial Crisis: Evidence from the UK, BRICS and MIST markets," Research in International Business and Finance, Elsevier, vol. 37(C), pages 605-619.
    23. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    24. Chen, Shi & Bao, Si & Zhou, Yu, 2016. "The predictive power of Japanese candlestick charting in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 148-165.
    25. Stefan, F.M. & Atman, A.P.F., 2015. "Is there any connection between the network morphology and the fluctuations of the stock market index?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 630-641.
    26. Wei, J.R. & Huang, J.P. & Hui, P.M., 2013. "An agent-based model of stock markets incorporating momentum investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2728-2735.
    27. Al-Khazali, Osamah M. & Pyun, Chong Soo & Kim, Daewon, 2012. "Are exchange rate movements predictable in Asia-Pacific markets? Evidence of random walk and martingale difference processes," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 221-231.
    28. Ni, Yensen & Cheng, Yirung & Huang, Paoyu & Day, Min-Yuh, 2018. "Trading strategies in terms of continuous rising (falling) prices or continuous bullish (bearish) candlesticks emitted," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 188-204.
    29. de Resende, Charlene C. & Pereira, Adriano C.M. & Cardoso, Rodrigo T.N. & de Magalhães, A.R. Bosco, 2017. "Investigating market efficiency through a forecasting model based on differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 199-212.
    30. Ducha, F.A. & Atman, A.P.F. & Bosco de Magalhães, A.R., 2021. "Information flux in complex networks: Path to stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    31. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    32. Bury, Thomas, 2014. "Predicting trend reversals using market instantaneous state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 79-91.
    33. Chen, Feier & Miao, Yuqi & Tian, Kang & Ding, Xiaoxu & Li, Tingyi, 2017. "Multifractal cross-correlations between crude oil and tanker freight rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 344-354.
    34. Cajueiro, Daniel O. & Tabak, Benjamin M., 2004. "Evidence of long range dependence in Asian equity markets: the role of liquidity and market restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 656-664.
    35. Gil Cohen, 2021. "Optimizing candlesticks patterns for Bitcoin's trading systems," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 1155-1167, October.
    36. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    37. Thomas Bury, 2013. "Predicting trend reversals using market instantaneous state," Papers 1310.8169, arXiv.org, revised Mar 2014.
    38. Garcia, M.M. & Machado Pereira, A.C. & Acebal, J.L. & Bosco de Magalhães, A.R., 2020. "Forecast model for financial time series: An approach based on harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    39. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aktaev, Nurken E. & Bannova, K.A., 2022. "Mathematical modeling of probability distribution of money by means of potential formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Resende, Charlene C. & Pereira, Adriano C.M. & Cardoso, Rodrigo T.N. & de Magalhães, A.R. Bosco, 2017. "Investigating market efficiency through a forecasting model based on differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 199-212.
    2. Garcia, M.M. & Machado Pereira, A.C. & Acebal, J.L. & Bosco de Magalhães, A.R., 2020. "Forecast model for financial time series: An approach based on harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Ducha, F.A. & Atman, A.P.F. & Bosco de Magalhães, A.R., 2021. "Information flux in complex networks: Path to stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    4. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    5. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Mensi, Walid & Kumar, Ronald Ravinesh, 2017. "Examining the efficiency and interdependence of US credit and stock markets through MF-DFA and MF-DXA approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 351-363.
    6. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    8. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    9. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    10. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    11. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    12. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
    13. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    14. Ferreira, Paulo, 2018. "Long-range dependencies of Eastern European stock markets: A dynamic detrended analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 454-470.
    15. Horta, Paulo & Lagoa, Sérgio & Martins, Luís, 2014. "The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 140-153.
    16. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    17. Shahzad, Syed Jawad Hussain & Hernandez, Jose Areola & Hanif, Waqas & Kayani, Ghulam Mujtaba, 2018. "Intraday return inefficiency and long memory in the volatilities of forex markets and the role of trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 433-450.
    18. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
    19. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.
    20. Charutha, S. & Gopal Krishna, M. & Manimaran, P., 2020. "Multifractal analysis of Indian public sector enterprises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:582:y:2021:i:c:s0378437121005069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.