Multiscaling and rough volatility: an empirical investigation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
- Laurent E. Calvet, 2004.
"How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes,"
Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 49-83.
- Laurent-Emmanuel Calvet & Adlai J. Fisher, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Post-Print hal-00478472, HAL.
- Rand Wilcox, 2004. "Inferences Based on a Skipped Correlation Coefficient," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(2), pages 131-143.
- Laurent Calvet & Adlai Fisher, 2002.
"Multifractality In Asset Returns: Theory And Evidence,"
The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
- Laurent-Emmanuel Calvet & Adlai J. Fisher, 2002. "Multifractality in Asset Returns: Theory and Evidence," Post-Print hal-00478175, HAL.
- Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
- Laurent Calvet & Adlai Fisher & Benoit Mandelbrot, 1997. "Large Deviations and the Distribution of Price Changes," Cowles Foundation Discussion Papers 1165, Cowles Foundation for Research in Economics, Yale University.
- Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
- Giuseppe Brandi & T. Di Matteo, 2020. "On the statistics of scaling exponents and the Multiscaling Value at Risk," Papers 2002.04164, arXiv.org, revised Mar 2021.
- Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
- Carling, Kenneth, 2000. "Resistant outlier rules and the non-Gaussian case," Computational Statistics & Data Analysis, Elsevier, vol. 33(3), pages 249-258, May.
- Robert C. Merton, 2005.
"Theory of rational option pricing,"
World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288,
World Scientific Publishing Co. Pte. Ltd..
- Robert C. Merton, 1973. "Theory of Rational Option Pricing," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 141-183, Spring.
- Antoniades, I.P. & Brandi, Giuseppe & Magafas, L. & Di Matteo, T., 2021. "The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Ryan McCrickerd & Mikko S. Pakkanen, 2018. "Turbocharging Monte Carlo pricing for the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1877-1886, November.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Thomas Lux, 2004. "Detecting Multifractal Properties In Asset Returns: The Failure Of The "Scaling Estimator"," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 481-491.
- Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005.
"Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development,"
Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
- T. Di Matteo & T. Aste & M. M. Dacorogna, 2004. "Long term memories of developed and emerging markets: using the scaling analysis to characterize their stage of development," Papers cond-mat/0403681, arXiv.org.
- T. Di Matteo & T. Aste & Michel M. Dacorogna, 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Econometrics 0503004, University Library of Munich, Germany.
- Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997.
"A Multifractal Model of Asset Returns,"
Cowles Foundation Discussion Papers
1164, Cowles Foundation for Research in Economics, Yale University.
- Laurent Calvet & Adlai Fisher & Benoit Mandelbrot, 1999. "A Multifractal Model of Assets Returns," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-072, New York University, Leonard N. Stern School of Business-.
- Laurent-Emmanuel Calvet & Benoît B. Mandelbrot & Adlai J. Fisher, 2011. "A Multifractal Model of Asset Returns," Working Papers hal-00601870, HAL.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
- Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2018.
"Rough volatility: Evidence from option prices,"
IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 767-776, September.
- Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2017. "Rough volatility: evidence from option prices," Papers 1702.02777, arXiv.org.
- R. J. Buonocore & G. Brandi & R. N. Mantegna & T. Di Matteo, 2020.
"On the interplay between multiscaling and stock dependence,"
Quantitative Finance, Taylor & Francis Journals, vol. 20(1), pages 133-145, January.
- R. J. Buonocore & G. Brandi & R. N. Mantegna & T. Di Matteo, 2018. "On the interplay between multiscaling and stocks dependence," Papers 1802.01113, arXiv.org, revised Mar 2019.
- Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
- Benoit Mandelbrot, 2015.
"The Variation of Certain Speculative Prices,"
World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78,
World Scientific Publishing Co. Pte. Ltd..
- Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394-394.
- Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
- Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
- Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
- Ryan McCrickerd & Mikko S. Pakkanen, 2017. "Turbocharging Monte Carlo pricing for the rough Bergomi model," Papers 1708.02563, arXiv.org, revised Mar 2018.
- T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lee, Min-Jae & Choi, Sun-Yong, 2024. "Insights into the dynamics of market efficiency spillover of financial assets in different equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
- Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Yicun Li & Yuanyang Teng, 2022. "Estimation of the Hurst Parameter in Spot Volatility," Mathematics, MDPI, vol. 10(10), pages 1-26, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Antoniades, I.P. & Brandi, Giuseppe & Magafas, L. & Di Matteo, T., 2021. "The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Ioannis P. Antoniades & Giuseppe Brandi & L. G. Magafas & T. Di Matteo, 2020. "The use of scaling properties to detect relevant changes in financial time series: a new visual warning tool," Papers 2010.08890, arXiv.org, revised Dec 2020.
- Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012.
"Understanding the source of multifractality in financial markets,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
- Jozef Barunik & Tomaso Aste & Tiziana Di Matteo & Ruipeng Liu, 2012. "Understanding the source of multifractality in financial markets," Papers 1201.1535, arXiv.org, revised Jan 2012.
- Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Krenar Avdulaj & Ladislav Kristoufek, 2020. "On Tail Dependence and Multifractality," Mathematics, MDPI, vol. 8(10), pages 1-13, October.
- Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015.
"Option pricing with non-Gaussian scaling and infinite-state switching volatility,"
Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
- Fulvio Baldovin & Massimiliano Caporin & Michele Caraglio & Attilio Stella & Marco Zamparo, 2013. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Papers 1307.6322, arXiv.org, revised May 2014.
- Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
- Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
- Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
- Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2016. "Anomalous volatility scaling in high frequency financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 434-445.
- Noemi Nava & T. Di Matteo & Tomaso Aste, 2015. "Anomalous volatility scaling in high frequency financial data," Papers 1503.08465, arXiv.org, revised Dec 2015.
- Grahovac, Danijel & Leonenko, Nikolai N., 2014. "Detecting multifractal stochastic processes under heavy-tailed effects," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 78-89.
- Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
- Lee, Hojin & Song, Jae Wook & Chang, Woojin, 2016. "Multifractal Value at Risk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 113-122.
- D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
- Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
- Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
- Goddard, John & Onali, Enrico, 2012.
"Self-affinity in financial asset returns,"
International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
- John Goddard & Enrico Onali, 2014. "Self-affinity in financial asset returns," Papers 1401.7170, arXiv.org.
- Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CWA-2022-03-07 (Central and Western Asia)
- NEP-RMG-2022-03-07 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2201.10466. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.