IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v8y2022i1d10.1186_s40854-022-00394-x.html
   My bibliography  Save this article

Improvement in Hurst exponent estimation and its application to financial markets

Author

Listed:
  • A. Gómez-Águila

    (University of Almería)

  • J. E. Trinidad-Segovia

    (University of Almería)

  • M. A. Sánchez-Granero

    (University of Almería)

Abstract

This research aims to improve the efficiency in estimating the Hurst exponent in financial time series. A new procedure is developed based on equality in distribution and is applicable to the estimation methods of the Hurst exponent. We show how to use this new procedure with three of the most popular algorithms (generalized Hurst exponet, total triangles area, and fractal dimension) in the literature. Findings show that this new approach improves the accuracy of the original methods, mainly for longer series. The second contribution of this study is that we show how to use this methodology to test whether the series is self-similar, constructing a confidence interval for the Hurst exponent for which the series satisfies this property. Finally, we present an empirical application of this new procedure to stocks of the S &P500 index. Similar to previous contributions, we consider this to be relevant to financial literature, as it helps to avoid inappropriate interpretations of market efficiency that can lead to erroneous decisions not only by market participants but also by policymakers.

Suggested Citation

  • A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
  • Handle: RePEc:spr:fininn:v:8:y:2022:i:1:d:10.1186_s40854-022-00394-x
    DOI: 10.1186/s40854-022-00394-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-022-00394-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-022-00394-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    2. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    3. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    4. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    5. John Haslett & Adrian E. Raftery, 1989. "Space‐Time Modelling with Long‐Memory Dependence: Assessing Ireland's Wind Power Resource," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 38(1), pages 1-21, March.
    6. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    7. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    8. Lotfalinezhad, Hamze & Maleki, Ali, 2020. "TTA, a new approach to estimate Hurst exponent with less estimation error and computational time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    9. L. Zunino & B. M. Tabak & D. G. Pérez & M. Garavaglia & O. A. Rosso, 2007. "Inefficiency in Latin-American market indices," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(1), pages 111-121, November.
    10. Kou, Gang & Yüksel, Serhat & Dinçer, Hasan, 2022. "Inventive problem-solving map of innovative carbon emission strategies for solar energy-based transportation investment projects," Applied Energy, Elsevier, vol. 311(C).
    11. Tiwari, Aviral Kumar & Umar, Zaghum & Alqahtani, Faisal, 2021. "Existence of long memory in crude oil and petroleum products: Generalised Hurst exponent approach," Research in International Business and Finance, Elsevier, vol. 57(C).
    12. Trinidad Segovia, J.E. & Fernández-Martínez, M. & Sánchez-Granero, M.A., 2012. "A note on geometric method-based procedures to calculate the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2209-2214.
    13. Ciner, Cetin, 2021. "Stock return predictability in the time of COVID-19," Finance Research Letters, Elsevier, vol. 38(C).
    14. Shahzad, Syed Jawad Hussain & Hernandez, Jose Areola & Hanif, Waqas & Kayani, Ghulam Mujtaba, 2018. "Intraday return inefficiency and long memory in the volatilities of forex markets and the role of trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 433-450.
    15. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Kristoufek, Ladislav, 2019. "Are the crude oil markets really becoming more efficient over time? Some new evidence," Energy Economics, Elsevier, vol. 82(C), pages 253-263.
    17. Kristoufek, Ladislav & Vosvrda, Miloslav, 2019. "Cryptocurrencies market efficiency ranking: Not so straightforward," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    18. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    19. Couillard, Michel & Davison, Matt, 2005. "A comment on measuring the Hurst exponent of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 404-418.
    20. Matos, José A.O. & Gama, Sílvio M.A. & Ruskin, Heather J. & Sharkasi, Adel Al & Crane, Martin, 2008. "Time and scale Hurst exponent analysis for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3910-3915.
    21. Karen Balladares & José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Angel Sánchez-Granero, 2021. "Statistical Arbitrage in Emerging Markets: A Global Test of Efficiency," Mathematics, MDPI, vol. 9(2), pages 1-20, January.
    22. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    23. David K. Backus & Stanley E. Zin, 1993. "Long-memory inflation uncertainty: evidence from the term structure of interest rates," Proceedings, Federal Reserve Bank of Cleveland, pages 681-708.
    24. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    25. Luo, Yi & Huang, Yirong, 2018. "A new combined approach on Hurst exponent estimate and its applications in realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1364-1372.
    26. Alvarez-Ramirez, Jose & Echeverria, Juan C. & Rodriguez, Eduardo, 2008. "Performance of a high-dimensional R/S method for Hurst exponent estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6452-6462.
    27. Miguel Ángel Sánchez & Juan E Trinidad & José García & Manuel Fernández, 2015. "The Effect of the Underlying Distribution in Hurst Exponent Estimation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    28. Sánchez Granero, M.A. & Trinidad Segovia, J.E. & García Pérez, J., 2008. "Some comments on Hurst exponent and the long memory processes on capital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5543-5551.
    29. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    30. Sánchez-Granero, M.A. & Balladares, K.A. & Ramos-Requena, J.P. & Trinidad-Segovia, J.E., 2020. "Testing the efficient market hypothesis in Latin American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    31. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    32. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    33. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    34. Kwangil Bae & Hankil Kang & Jangkoo Kang, 2020. "Can fat-tail create the momentum and reversal?," Applied Economics, Taylor & Francis Journals, vol. 52(44), pages 4850-4863, September.
    35. Bariviera, A.F. & Guercio, M. Belén & Martinez, Lisana B., 2012. "A comparative analysis of the informational efficiency of the fixed income market in seven European countries," Economics Letters, Elsevier, vol. 116(3), pages 426-428.
    36. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos-Requena, J.P. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A., 2017. "Introducing Hurst exponent in pair trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 39-45.
    2. Miguel Ángel Sánchez & Juan E Trinidad & José García & Manuel Fernández, 2015. "The Effect of the Underlying Distribution in Hurst Exponent Estimation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    3. Trinidad Segovia, J.E. & Fernández-Martínez, M. & Sánchez-Granero, M.A., 2019. "A novel approach to detect volatility clusters in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Trinidad Segovia, J.E., 2013. "Measuring the self-similarity exponent in Lévy stable processes of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5330-5345.
    5. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    6. López-García, M.N. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A. & Pouchkarev, I., 2021. "Extending the Fama and French model with a long term memory factor," European Journal of Operational Research, Elsevier, vol. 291(2), pages 421-426.
    7. Gómez-Águila, A. & Sánchez-Granero, M.A., 2021. "A theoretical framework for the TTA algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    8. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
    9. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
    10. Kristoufek, Ladislav, 2019. "Are the crude oil markets really becoming more efficient over time? Some new evidence," Energy Economics, Elsevier, vol. 82(C), pages 253-263.
    11. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX," Energy Economics, Elsevier, vol. 59(C), pages 167-178.
    12. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    13. Li, Daye & Kou, Zhun & Sun, Qiankun, 2015. "The scale-dependent market trend: Empirical evidences using the lagged DFA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 26-35.
    14. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    15. José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Ángel Sánchez-Granero, 2020. "An Alternative Approach to Measure Co-Movement between Two Time Series," Mathematics, MDPI, vol. 8(2), pages 1-24, February.
    16. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    17. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.
    18. Karen Balladares & José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Angel Sánchez-Granero, 2021. "Statistical Arbitrage in Emerging Markets: A Global Test of Efficiency," Mathematics, MDPI, vol. 9(2), pages 1-20, January.
    19. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    20. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:8:y:2022:i:1:d:10.1186_s40854-022-00394-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.