IDEAS home Printed from https://ideas.repec.org/a/wsi/acsxxx/v15y2012i06ns0219525912500658.html
   My bibliography  Save this article

Fractal Markets Hypothesis And The Global Financial Crisis: Scaling, Investment Horizons And Liquidity

Author

Listed:
  • LADISLAV KRISTOUFEK

    (Institute of Economic Studies, Faculty of Social Sciences, Charles University, Opletalova 26, 110 00, Prague, Czech Republic;
    Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod Vodarenskou vezi 4, 182 08, Prague, Czech Republic)

Abstract

We investigate whether the fractal markets hypothesis and its focus on liquidity and investment horizons give reasonable predictions about the dynamics of the financial markets during turbulences such as the Global Financial Crisis of late 2000s. Compared to the mainstream efficient markets hypothesis, the fractal markets hypothesis considers the financial markets as complex systems consisting of many heterogenous agents, which are distinguishable mainly with respect to their investment horizon. In the paper, several novel measures of trading activity at different investment horizons are introduced through the scaling of variance of the underlying processes. On the three most liquid US indices — DJI, NASDAQ and S&P500 — we show that the predictions of the fractal markets hypothesis actually fit the observed behavior adequately.

Suggested Citation

  • Ladislav Kristoufek, 2012. "Fractal Markets Hypothesis And The Global Financial Crisis: Scaling, Investment Horizons And Liquidity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1-13.
  • Handle: RePEc:wsi:acsxxx:v:15:y:2012:i:06:n:s0219525912500658
    DOI: 10.1142/S0219525912500658
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219525912500658
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219525912500658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    2. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
    3. Czarnecki, Łukasz & Grech, Dariusz & Pamuła, Grzegorz, 2008. "Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6801-6811.
    4. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    5. Stanley, H.Eugene, 2003. "Statistical physics and economic fluctuations: do outliers exist?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(1), pages 279-292.
    6. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifractal Volatility," Elsevier Monographs, Elsevier, edition 1, number 9780121500139.
    7. Marco Corazza & A. G. Malliaris, 2005. "Multi-Fractality in Foreign Currency Markets," World Scientific Book Chapters, in: Economic Uncertainty, Instabilities And Asset Bubbles Selected Essays, chapter 11, pages 151-184, World Scientific Publishing Co. Pte. Ltd..
    8. Domino, Krzysztof, 2012. "The use of the Hurst exponent to investigate the global maximum of the Warsaw Stock Exchange WIG20 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 156-169.
    9. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    10. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    11. Laurent E. Calvet & Adlai Fisher, 2008. "Multifractal Volatility: Theory, Forecasting and Pricing," Post-Print hal-00671877, HAL.
    12. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    13. Domino, Krzysztof, 2011. "The use of the Hurst exponent to predict changes in trends on the Warsaw Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 98-109.
    14. Ladislav Kristoufek, 2012. "Multifractal Height Cross-Correlation Analysis: A New Method for Analyzing Long-Range Cross-Correlations," Papers 1201.3473, arXiv.org, revised Jan 2012.
    15. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    16. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    17. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    18. Stanley, H.E & Amaral, L.A.N & Canning, D & Gopikrishnan, P & Lee, Y & Liu, Y, 1999. "Econophysics: Can physicists contribute to the science of economics?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 156-169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
    2. Morales, Raffaello & Di Matteo, T. & Aste, Tomaso, 2013. "Non-stationary multifractality in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6470-6483.
    3. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    4. Oussama Tilfani & My Youssef El Boukfaoui, 2020. "Multifractal Analysis of African Stock Markets During the 2007–2008 US Crisis," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-31, January.
    5. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
    6. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    8. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    9. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    10. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    11. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
    12. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.
    13. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    14. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
    15. M. Fern'andez-Mart'inez & M. A S'anchez-Granero & Mar'ia Jos'e Mu~noz Torrecillas & Bill McKelvey, 2016. "A comparison among some Hurst exponent approaches to predict nascent bubbles in $500$ company stocks," Papers 1601.04188, arXiv.org.
    16. Kristoufek, Ladislav, 2009. "R/S analysis and DFA: finite sample properties and confidence intervals," MPRA Paper 16446, University Library of Munich, Germany.
    17. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    18. Domino, Krzysztof & Błachowicz, Tomasz, 2015. "The use of copula functions for modeling the risk of investment in shares traded on world stock exchanges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 142-151.
    19. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    20. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:15:y:2012:i:06:n:s0219525912500658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.