IDEAS home Printed from https://ideas.repec.org/r/spr/compst/v23y2008i2p317-335.html
   My bibliography  Save this item

Automatic selection of indicators in a fully saturated regression

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
  2. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2021. "Modelling non-stationary ‘Big Data’," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1556-1575.
  3. Stillwagon, Josh R., 2016. "Non-linear exchange rate relationships: An automated model selection approach with indicator saturation," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 84-109.
  4. Hendry, David F. & Martinez, Andrew B., 2017. "Evaluating multi-step system forecasts with relatively few forecast-error observations," International Journal of Forecasting, Elsevier, vol. 33(2), pages 359-372.
  5. Hecq, Alain & Jacobs, Jan P.A.M. & Stamatogiannis, Michalis P., 2019. "Testing for news and noise in non-stationary time series subject to multiple historical revisions," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 396-407.
  6. Bill Russell & Dooruj Rambaccussing, 2016. "Breaks and the Statistical Process of Inflation: The Case of the ‘Modern’ Phillips Curve," Dundee Discussion Papers in Economics 294, Economic Studies, University of Dundee.
  7. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).
  8. Luigi Ermini & David F. Hendry, 2008. "Log Income vs. Linear Income: An Application of the Encompassing Principle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 807-827, December.
  9. Liqian Cai & Arnab Bhattacharjee & Roger Calantone & Taps Maiti, 2019. "Variable Selection with Spatially Autoregressive Errors: A Generalized Moments LASSO Estimator," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 146-200, September.
  10. Karen Croxson & J. James Reade, 2014. "Information and Efficiency: Goal Arrival in Soccer Betting," Economic Journal, Royal Economic Society, vol. 124(575), pages 62-91, March.
  11. Gilli, Martino & Calcaterra, Matteo & Emmerling, Johannes & Granella, Francesco, 2024. "Climate change impacts on the within-country income distributions," Journal of Environmental Economics and Management, Elsevier, vol. 127(C).
  12. Campos, Nauro F. & Macchiarelli, Corrado, 2021. "The dynamics of core and periphery in the European monetary union: A new approach," Journal of International Money and Finance, Elsevier, vol. 112(C).
  13. Bent Nielsen & Xiyu Jiao, 2016. "Asymptotic Analysis of Iterated 1-step Huber-skip M-estimators with Varying Cut-offs," Economics Papers 2016-W08, Economics Group, Nuffield College, University of Oxford.
  14. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
  15. Rocha, Jordano Vieira & Pereira, Pedro L. Valls, 2015. "Forecast comparison with nonlinear methods for Brazilian industrial production," Textos para discussão 397, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
  16. Carlomagno, Guillermo, 2014. "The pairwise approach to model a large set of disaggregates with common trends," DES - Working Papers. Statistics and Econometrics. WS ws141309, Universidad Carlos III de Madrid. Departamento de Estadística.
  17. Holland, Marcio & Marçal, Emerson & de Prince, Diogo, 2020. "Is fiscal policy effective in Brazil? An empirical analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 40-52.
  18. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
  19. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
  20. Ragnar Nymoen & Kari Pedersen & Jon Ivar Sjåberg, 2019. "Estimation of Effects of Recent Macroprudential Policies in a Sample of Advanced Open Economies," IJFS, MDPI, vol. 7(2), pages 1-20, May.
  21. Hendry, David F. & Pretis, Felix, 2023. "Analysing differences between scenarios," International Journal of Forecasting, Elsevier, vol. 39(2), pages 754-771.
  22. Jennifer L. Castle & Michael P. Clements & David F. Hendry, 2016. "An Overview of Forecasting Facing Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 3-23, September.
  23. David F. Hendry, 2011. "Empirical Economic Model Discovery and Theory Evaluation," Rationality, Markets and Morals, Frankfurt School Verlag, Frankfurt School of Finance & Management, vol. 2(46), October.
  24. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
  25. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.