IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v214y2020i1p256-273.html
   My bibliography  Save this article

Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions

Author

Listed:
  • Pretis, Felix

Abstract

Estimates of both the human impact on climate as well as the economic impacts of climate change are crucial to inform policy decisions. Econometric modelling allows us to quantify these impacts and their uncertainties, but models have to be consistent with the underlying physics and the time series properties of the data. Here I show that energy-balance models of climate are equivalent to an econometric cointegrated system and can be estimated in discrete time. This equivalence provides a basis for the use of cointegration methods to estimate climate responses and test their feedback. Further, it is possible to use the estimated parameters to quantify uncertainties in integrated assessment models of the economic impacts of climate change. In an application I estimate a system of temperatures, ocean heat content, and radiative forcing including greenhouse gases, and find statistical support for the cointegrated energy balance model. Accounting for structural breaks from volcanic eruptions highlights large parameter uncertainties and shows that previous empirical estimates of the temperature response to increased CO2 concentrations may be misleadingly low due to model-misspecification.

Suggested Citation

  • Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
  • Handle: RePEc:eee:econom:v:214:y:2020:i:1:p:256-273
    DOI: 10.1016/j.jeconom.2019.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407619301162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    2. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    3. Kaufmann, R. K. & Kauppi, H. & Mann, M. L. & Stock, James H., 2011. "Reconciling anthropogenic climate change with observed temperature 1998–2008," Scholarly Articles 29071926, Harvard University Department of Economics.
    4. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Felix Pretis, 2015. "Detecting Location Shifts during Model Selection by Step-Indicator Saturation," Econometrics, MDPI, vol. 3(2), pages 1-25, April.
    5. David F. Hendry & Felix Pretis, 2013. "Anthropogenic influences on atmospheric CO2," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 12, pages 287-326, Edward Elgar Publishing.
    6. Søren Johansen & Bent Nielsen, 2016. "Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 321-348, June.
    7. Stern, David I., 2006. "An atmosphere-ocean time series model of global climate change," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1330-1346, November.
    8. Waldhoff, Stephanie & Anthoff, David & Rose, Steven K. & Tol, Richard S. J., 2014. "The marginal damage costs of different greenhouse gases: An application of FUND," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 8, pages 1-33.
    9. William Nordhaus, 2018. "Projections and Uncertainties about Climate Change in an Era of Minimal Climate Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 10(3), pages 333-360, August.
    10. William Nordhaus, 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 000.
    11. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2015. "Bootstrap Testing of Hypotheses on Co‐Integration Relations in Vector Autoregressive Models," Econometrica, Econometric Society, vol. 83, pages 813-831, March.
    12. Robert Kaufmann & Heikki Kauppi & Michael Mann & James Stock, 2013. "Does temperature contain a stochastic trend: linking statistical results to physical mechanisms," Climatic Change, Springer, vol. 118(3), pages 729-743, June.
    13. Johansen, Søren, 2000. "A Bartlett Correction Factor For Tests On The Cointegrating Relations," Econometric Theory, Cambridge University Press, vol. 16(5), pages 740-778, October.
    14. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    15. Magnus, J.R. & Melenberg, B. & Muris, C.H.M., 2011. "Global Warming and Local Dimming : The Statistical Evidence," Other publications TiSEM b99c7444-f83a-40ac-a46d-c, Tilburg University, School of Economics and Management.
    16. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    17. Hope, Chris & Anderson, John & Wenman, Paul, 1993. "Policy analysis of the greenhouse effect : An application of the PAGE model," Energy Policy, Elsevier, vol. 21(3), pages 327-338, March.
    18. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    19. Magnus, Jan R. & Melenberg, Bertrand & Muris, Chris, 2011. "Global Warming and Local Dimming: The Statistical Evidence," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 452-464.
    20. Solomon Hsiang, 2016. "Climate Econometrics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 43-75, October.
    21. Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2020. "A multicointegration model of global climate change," Journal of Econometrics, Elsevier, vol. 214(1), pages 175-197.
    22. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    23. David Stern & Robert Kaufmann, 2014. "Anthropogenic and natural causes of climate change," Climatic Change, Springer, vol. 122(1), pages 257-269, January.
    24. Nicholas Stern, 2016. "Economics: Current climate models are grossly misleading," Nature, Nature, vol. 530(7591), pages 407-409, February.
    25. Millner, Antony & McDermott, Thomas K. J., 2016. "Model confirmation in climate economics," LSE Research Online Documents on Economics 67122, London School of Economics and Political Science, LSE Library.
    26. Søren Johansen & Bent Nielsen, 2016. "Rejoinder: Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 374-381, June.
    27. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    28. Phillips, P C B, 1991. "Error Correction and Long-Run Equilibrium in Continuous Time," Econometrica, Econometric Society, vol. 59(4), pages 967-980, July.
    29. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    30. Francisco Estrada & Pierre Perron & Benjamin Martinez-Lopez, 2013. "Statistically-derived contributions of diverse human influences to 20th century temperature changes," Boston University - Department of Economics - Working Papers Series 2013-017, Boston University - Department of Economics.
    31. Burke, M. & Craxton, M. & Kolstad, C.D. & Onda, C. & Allcott, H. & Baker, E. & Barrage, L. & Carson, R. & Gillingham, K. & Graff-Zivin, J. & Greenstone, M. & Hallegatte, S. & Hanemann, W.M. & Heal, G., 2016. "Opportunities for advances in climate change economics," ISU General Staff Papers 3565, Iowa State University, Department of Economics.
    32. Burke, M & Craxton, M & Kolstad, CD & Onda, C & Allcott, H & Baker, E & Barrage, L & Carson, R & Gillingham, K & Graf-Zivin, J & Greenstone, M & Hallegatte, S & Hanemann, WM & Heal, G & Hsiang, S & Jo, 2016. "Opportunities for advances in climate change economics," University of California at Santa Barbara, Recent Works in Economics qt4tc5d9pb, Department of Economics, UC Santa Barbara.
    33. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    34. Solomon M. Hsiang, 2016. "Climate Econometrics," NBER Working Papers 22181, National Bureau of Economic Research, Inc.
    35. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    36. Juselius, Katarina, 2006. "The Cointegrated VAR Model: Methodology and Applications," OUP Catalogue, Oxford University Press, number 9780199285679.
    37. M. Kessler & A. Rahbek, 2004. "Identification and Inference for Multivariate Cointegrated and Ergodic Gaussian Diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 7(2), pages 137-151, May.
    38. Mathieu Kessler & Anders Rahbek, 2001. "Asymptotic Likelihood Based Inference for Co‐integrated Homogenous Gaussian Diffusions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 455-470, September.
    39. Hope, Chris W., 2011. "The social cost of CO2 from the PAGE09 model," Economics Discussion Papers 2011-39, Kiel Institute for the World Economy (IfW Kiel).
    40. Giuseppe Cavaliere & Anders Rahbek & A. M. Robert Taylor, 2012. "Bootstrap Determination of the Co‐Integration Rank in Vector Autoregressive Models," Econometrica, Econometric Society, vol. 80(4), pages 1721-1740, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    2. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    3. Felix Pretis, 2015. "Econometric Models of Climate Systems: The Equivalence of Two-Component Energy Balance Models and Cointegrated VARs," Economics Series Working Papers 750, University of Oxford, Department of Economics.
    4. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    5. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    6. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    7. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    8. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    9. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    10. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    11. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Bassino, Jean-Pascal & Lagoarde-Segot, Thomas & Woitek, Ulrich, 2020. "The irreversible welfare cost of climate anomalies. Evidence from Japan (1872-1917)," Discussion Paper Series 704, Institute of Economic Research, Hitotsubashi University.
    13. Gagliardi, Nicola & Grinza, Elena & Rycx, François, 2024. "The Productivity Impact of Global Warming: Firm-Level Evidence for Europe," IZA Discussion Papers 17241, Institute of Labor Economics (IZA).
    14. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    15. Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021. "The GDP-Temperature relationship: Implications for climate change damages," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    16. Themann, Michael, 2021. "At boiling point: Temperature shocks in global business groups," Ruhr Economic Papers 905, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Olper, Alessandro & Maugeri, Maurizio & Manara, Veronica & Raimondi, Valentina, 2021. "Weather, climate and economic outcomes: Evidence from Italy," Ecological Economics, Elsevier, vol. 189(C).
    18. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    19. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).
    20. Desbureaux, Sébastien & Rodella, Aude-Sophie, 2019. "Drought in the city: The economic impact of water scarcity in Latin American metropolitan areas," World Development, Elsevier, vol. 114(C), pages 13-27.

    More about this item

    Keywords

    Cointegration; Vector autoregression; Climate; Energy balance; Indicator saturation;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:214:y:2020:i:1:p:256-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.