IDEAS home Printed from https://ideas.repec.org/a/bla/kyklos/v69y2016i3p518-556.html
   My bibliography  Save this article

Prediction Markets, Social Media and Information Efficiency

Author

Listed:
  • Leighton Vaughan Williams
  • J. James Reade

Abstract

No abstract is available for this item.

Suggested Citation

  • Leighton Vaughan Williams & J. James Reade, 2016. "Prediction Markets, Social Media and Information Efficiency," Kyklos, Wiley Blackwell, vol. 69(3), pages 518-556, August.
  • Handle: RePEc:bla:kyklos:v:69:y:2016:i:3:p:518-556
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/kykl.12119
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Karen Croxson & J. James Reade, 2011. "Exchange vs Dealers: A High-Frequency Analysis of In-Play Betting Prices," Discussion Papers 11-19, Department of Economics, University of Birmingham.
    3. David Hendry & Jurgen A. Doornik & Felix Pretis, 2013. "Step-indicator Saturation," Economics Series Working Papers 658, University of Oxford, Department of Economics.
    4. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    5. Tushar Rao & Saket Srivastava, 2012. "Modeling Movements in Oil, Gold, Forex and Market Indices using Search Volume Index and Twitter Sentiments," Papers 1212.1037, arXiv.org.
    6. Mike Thelwall & Kevan Buckley & Georgios Paltoglou, 2011. "Sentiment in Twitter events," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(2), pages 406-418, February.
    7. Annette Meinusch & Peter Tillmann, 2017. "Quantitative Easing and Tapering Uncertainty: Evidence from Twitter," International Journal of Central Banking, International Journal of Central Banking, vol. 13(4), pages 227-258, December.
    8. Ricard Gil & Steven D. Levitt, 2007. "Testing the Efficiency of Markets in the 2002 World Cup," Journal of Prediction Markets, University of Buckingham Press, vol. 1(3), pages 255-270, December.
    9. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    10. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Felix Pretis, 2015. "Detecting Location Shifts during Model Selection by Step-Indicator Saturation," Econometrics, MDPI, vol. 3(2), pages 1-25, April.
    11. Dietmar Janetzko, 2014. "Predictive modeling in turbulent times – What Twitter reveals about the EUR/USD exchange rate," Netnomics, Springer, vol. 15(2), pages 69-106, September.
    12. Gelman, Andrew & King, Gary, 1993. "Why Are American Presidential Election Campaign Polls So Variable When Votes Are So Predictable?," British Journal of Political Science, Cambridge University Press, vol. 23(4), pages 409-451, October.
    13. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    14. James Reade & Genaro Sucarrat, 2016. "General-to-Specific (GETS) Modelling And Indicator Saturation With The R Package Gets," Economics Series Working Papers 794, University of Oxford, Department of Economics.
    15. Timm O. Sprenger & Philipp G. Sandner & Andranik Tumasjan & Isabell M. Welpe, 2014. "News or Noise? Using Twitter to Identify and Understand Company-specific News Flow," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 41(7-8), pages 791-830, September.
    16. Karen Croxson & J. James Reade, 2014. "Information and Efficiency: Goal Arrival in Soccer Betting," Economic Journal, Royal Economic Society, vol. 124(575), pages 62-91, March.
    17. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    18. Julianne Treme & Zoe VanDerPloeg, 2014. "The Twitter Effect: Social Media Usage as a Contributor to Movie Success," Economics Bulletin, AccessEcon, vol. 34(2), pages 793-809.
    19. Michela Nardo & Marco Petracco-Giudici & Minás Naltsidis, 2016. "Walking Down Wall Street With A Tablet: A Survey Of Stock Market Predictions Using The Web," Journal of Economic Surveys, Wiley Blackwell, vol. 30(2), pages 356-369, April.
    20. Fama, Eugene F, et al, 1969. "The Adjustment of Stock Prices to New Information," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(1), pages 1-21, February.
    21. Alexander Porshnev & Ilya Redkin & Alexey Shevchenko, 2013. "Improving prediction of stock market indices by analyzing the psychological states of twitter users," HSE Working papers WP BRP 22/FE/2013, National Research University Higher School of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tai, Chung-Ching & Lin, Hung-Wen & Chie, Bin-Tzong & Tung, Chen-Yuan, 2019. "Predicting the failures of prediction markets: A procedure of decision making using classification models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 297-312.
    2. Felix Pretis, 2022. "Does a Carbon Tax Reduce CO2 Emissions? Evidence from British Columbia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 115-144, September.
    3. Benesch, Christine & Loretz, Simon & Stadelmann, David & Thomas, Tobias, 2019. "Media coverage and immigration worries: Econometric evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 160(C), pages 52-67.
    4. Merz, Oliver & Flepp, Raphael & Franck, Egon, 2021. "Sonic Thunder vs. Brian the Snail: Are people affected by uninformative racehorse names?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 93(C).
    5. Lohrmann, Christoph & Luukka, Pasi, 2019. "Classification of intraday S&P500 returns with a Random Forest," International Journal of Forecasting, Elsevier, vol. 35(1), pages 390-407.
    6. Oasis Kodila-Tedika, 2021. "Natural resource governance: does social media matter?," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 127-140, April.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    9. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2018. "Forecasting With Social Media: Evidence From Tweets On Soccer Matches," Economic Inquiry, Western Economic Association International, vol. 56(3), pages 1748-1763, July.
    10. Brown, Alasdair & Reade, J. James & Vaughan Williams, Leighton, 2019. "When are prediction market prices most informative?," International Journal of Forecasting, Elsevier, vol. 35(1), pages 420-428.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leighton Vaughan Williams & James Reade, 2014. "Prediction Markets, Twitter and Bigotgate," Economics Discussion Papers em-dp2014-09, Department of Economics, University of Reading.
    2. Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Stillwagon, Josh R., 2016. "Non-linear exchange rate relationships: An automated model selection approach with indicator saturation," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 84-109.
    5. Jennifer L. Castle & David F. Hendry & Andrew B. Martinez, 2017. "Evaluating Forecasts, Narratives and Policy Using a Test of Invariance," Econometrics, MDPI, vol. 5(3), pages 1-27, September.
    6. Møller, Niels Framroze & Andersen, Laura Mørch & Hansen, Lars Gårn & Jensen, Carsten Lynge, 2019. "Can pecuniary and environmental incentives via SMS messaging make households adjust their electricity demand to a fluctuating production?," Energy Economics, Elsevier, vol. 80(C), pages 1050-1058.
    7. Mills, Brian M. & Salaga, Steven, 2018. "A natural experiment for efficient markets: Information quality and influential agents," Journal of Financial Markets, Elsevier, vol. 40(C), pages 23-39.
    8. James Reade & Genaro Sucarrat, 2016. "General-to-Specific (GETS) Modelling And Indicator Saturation With The R Package Gets," Economics Series Working Papers 794, University of Oxford, Department of Economics.
    9. Niels Framroze Møller & Laura Mørch Andersen & Lars Gårn Hansen & Carsten Lynge Jensen, 2018. "Can pecuniary and environmental incentives via SMS messaging make households adjust their intra-day electricity demand to a fluctuating production?," IFRO Working Paper 2018/06, University of Copenhagen, Department of Food and Resource Economics.
    10. Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2013. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 249-265, February.
    11. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    12. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    13. Kai Fischer & Justus Haucap, 2022. "Home advantage in professional soccer and betting market efficiency: The role of spectator crowds," Kyklos, Wiley Blackwell, vol. 75(2), pages 294-316, May.
    14. Mukanjari, Samson & Sterner, Thomas, 2018. "Do Markets Trump Politics? Evidence from Fossil Market Reactions to the Paris Agreement and the U.S. Election," Working Papers in Economics 728, University of Gothenburg, Department of Economics.
    15. AitSahlia, Farid & Yoon, Joon-Hui, 2016. "Information stages in efficient markets," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 84-94.
    16. Reddy, Kotapati Srinivasa, 2015. "Extant Reviews on Entry-mode/Internationalization, Mergers & Acquisitions, and Diversification: Understanding Theories and Establishing Interdisciplinary Research," MPRA Paper 63744, University Library of Munich, Germany, revised 2015.
    17. Cotton, Deborah & De Mello, Lurion, 2014. "Econometric analysis of Australian emissions markets and electricity prices," Energy Policy, Elsevier, vol. 74(C), pages 475-485.
    18. An, Suwei, 2023. "Essays on incentive contracts, M&As, and firm risk," Other publications TiSEM dd97d2f5-1c9d-47c5-ba62-f, Tilburg University, School of Economics and Management.
    19. Godfrey, Keith R.L., 2017. "Toward a model-free measure of market efficiency," Pacific-Basin Finance Journal, Elsevier, vol. 44(C), pages 97-112.
    20. Pinar OKAN GOKTEN & Furkan BASER & Soner GOKTEN, 2017. "Using fuzzy c-means clustering algorithm in financial health scoring," The Audit Financiar journal, Chamber of Financial Auditors of Romania, vol. 15(147), pages 385-385.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:kyklos:v:69:y:2016:i:3:p:518-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0023-5962 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.